
Python-Unit 4 -Part 1
Strings

 String in Python

A string is a sequence of characters.

A character is simply a symbol. For example, the English language has 26 characters.

Computers do not deal with characters, they deal with numbers (binary). Even though you may see characters on your screen, internally it is

stored and manipulated as a combination of 0s and 1s.

This conversion of character to a number is called encoding, and the reverse process is decoding. ASCII and Unicode are some of the popular

encodings used.

a string is a sequence of Unicode characters. Unicode was introduced to include every character in all languages and bring uniformity in

encoding

 create a string in Python

Strings can be created by enclosing characters inside a single quote or double-quotes.
 Even triple quotes can be used in Python but generally used to represent multiline strings and docstrings.

my_string = 'Hello'
print(my_string)
my_string = "Hello"
print(my_string)
my_string = '''Hello'''
print(my_string)
my_string = """Hello, welcome to
 the world of Python"""
print(my_string)

When you run the program, the output will be:

Hello

Hello

Hello

Hello, welcome to

the world of Python

access characters in a string

We can access individual characters using indexing and a range of characters using slicing.

Index starts from 0.

Trying to access a character out of index range will raise an IndexError.

The index must be an integer.

can't use floats or other types, this will result into TypeError.

Python allows negative indexing for its sequences.

The index of -1 refers to the last item, -2 to the second last item and so on.

We can access a range of items in a string by using the slicing operator :(colon).

change or delete a string

Strings are immutable.

This means that elements of a string cannot be changed once they have been assigned.

 We can simply reassign different strings to the same name.

We cannot delete or remove characters from a string. But deleting the string entirely is possible using the del
keyword.

Python String Operations

Concatenation of Two or More Strings

Joining of two or more strings into a single one is called concatenation.

The + operator does this in Python. Simply writing two string literals together also concatenates them.

The * operator can be used to repeat the string for a given number of times.

Iterating Through a string

We can iterate through a string using a for loop. Here is an example to count the number of 'l's in a string.

https://www.programiz.com/python-programming/for-loop

String Membership Test

We can test if a substring exists within a string or not, using the keyword in.

Built-in functions to Work with Python

enumerate()

len()

format()

capitalize()

lower()

 upper()

join()

 split()

 find()

 replace()

 enumerate()-The enumerate() function returns an enumerate object. It contains the index and value of all
the items in the string as pairs. This can be useful for iteration.

len()-len() returns the length (nu

Here is a list of all the escape sequences supported by Python.

Raw String to ignore escape sequence

Sometimes we may wish to ignore the escape sequences inside a string. To do this we can place r or R in

front of the string. This will imply that it is a raw string and any escape sequence inside it will be ignored.

The format() Method for Formatting Strings

The format() method that is available with the string object is very versatile and powerful in formatting strings.

Format strings contain curly braces {} as placeholders or replacement fields which get replaced.

We can use positional arguments or keyword arguments to specify the order.

Python String capitalize()

the capitalize() method converts first character of a string to uppercase letter and lowercases all other

characters, if any.

The syntax of capitalize() is:

string.capitalize()

The capitalize()function doesn't take any parameter.

The capitalize() function returns a string with the first letter capitalized and all other characters lowercased.
It doesn't modify the original string.

Python String casefold()

The casefold() method is an aggressive lower() method which converts strings to case folded strings for

caseless matching.

The casefold() method removes all case distinctions present in a string. It is used for caseless matching, i.e.

ignores cases when comparing.

For example, the German lowercase letter ß is equivalent to ss. However, since ß is already lowercase, the

lower() method does nothing to it. But, casefold() converts it to ss.

https://www.programiz.com/python-programming/string

The syntax of casefold() is:

string.casefold()

The casefold() method doesn't take any parameters.

The casefold() method returns the case folded string.

Python String count()

The count() method returns the number of occurrences of a substring in the given string.

The syntax of count() method is:

string.count(substring, start=..., end=...)

count() Parameters:

count() method only requires a single parameter for execution. However, it also has two optional parameters:

● substring - string whose count is to be found.

● start (Optional) - starting index within the string where search starts.

● end (Optional) - ending index within the string where search ends.

Python String endswith()

The endswith() method returns True if a string ends with the specified suffix. If not, it returns False.

The syntax of endswith() is:
str.endswith(suffix[, start[, end]])

The endswith() takes three parameters:
● suffix - String or tuple of suffixes to be checked
● start (optional) - Beginning position where suffix is to be checked within the string.
● end (optional) - Ending position where suffix is to be checked within the string.

The endswith() method returns a boolean.

● It returns True if a string ends with the specified suffix.

● It returns False if a string doesn't end with the specified suffix.

Passing Tuple to endswith()

It's possible to pass a tuple suffix to the endswith() method in Python.

If the string ends with any item of the tuple, endswith() returns True. If not, it returns False

Python String find()

The find() method returns the index of first occurrence of the substring (if found). If not found, it returns -1.

The syntax of the find() method is:

str.find(sub[, start[, end]])

The find() method takes maximum of three parameters:

● sub - It is the substring to be searched in the str string.

● start and end (optional) - The range str[start:end] within which substring is searched.

The find() method returns an integer value:

● If the substring exists inside the string, it returns the index of the first occurence of the substring.

● If a substring doesn't exist inside the string, it returns -1.

Python String join()

The join() string method returns a string by joining all the elements of an iterable (list, string, tuple),
separated by a string separator.

The syntax of the join() method is:

string.join(iterable)

The join() method takes an iterable (objects capable of returning its members one at a time) as its
parameter.

Some of the example of iterables are:

● Native data types - List, Tuple, String, Dictionary and Set.

● File objects and objects you define with an __iter__() or __getitem()__ method.

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string
https://www.programiz.com/python-programming/dictionary
https://www.programiz.com/python-programming/set
https://www.programiz.com/python-programming/iterator

The join() method returns a string created by joining the elements of an iterable by string separator.

If the iterable contains any non-string values, it raises a TypeError exception.

Python String replace()
The replace() method replaces each matching occurrence of the old character/text in the string with the new

character/text.

It's syntax is:

str.replace(old, new [, count])

The replace() method can take maximum of 3 parameters:

● old - old substring you want to replace

● new - new substring which will replace the old substring

● count (optional) - the number of times you want to replace the old substring with the new substring

Note: If count is not specified, the replace() method replaces all occurrences of the old substring with the new substring.

The replace() method returns a copy of the string where the old substring is replaced with the new substring.

The original string is unchanged.

If the old substring is not found, it returns the copy of the original string.

Python String split()
The split() method breaks up a string at the specified separator and returns a list of strings.

The syntax of split() is:

str.split(separator, maxsplit)

split() Parameters
The split() method takes a maximum of 2 parameters:

● separator (optional)- Delimiter at which splits occur. If not provided, the string is splitted at whitespaces.

● maxsplit (optional) - Maximum number of splits. If not provided, there is no limit on the number of splits.

The split() method returns a list of strings.

If maxsplit is specified, the list will have a maximum of maxsplit+1 items.

Python String upper()

The upper() method converts all lowercase characters in a string into uppercase characters and returns it.
The syntax of upper() method is:

string.upper()

upper() method doesn't take any parameters.

upper() method returns the uppercase string from the given string. It converts all lowercase characters to uppercase.

If no lowercase characters exist, it returns the original string.

