
Python Unit 4-part 4

Dictionary and Set

Python Dictionary

Python dictionary is an unordered collection of items. Each item of a dictionary has a key/value pair.

Dictionaries are optimized to retrieve values when the key is known.

Creating Python Dictionary

Creating a dictionary is as simple as placing items inside curly braces {} separated by commas.

An item has a key and a corresponding value that is expressed as a pair (key: value).

While the values can be of any data type and can repeat, keys must be of immutable type (string, number or tuple with

immutable elements) and must be unique.

 we can also create a dictionary using the built-in dict() function.

https://www.programiz.com/python-programming/string
https://www.programiz.com/python-programming/numbers
https://www.programiz.com/python-programming/tuple

Accessing Elements from Dictionary

While indexing is used with other data types to access values, a dictionary uses keys. Keys can be used either

inside square brackets [] or with the get() method.

If we use the square brackets [], KeyError is raised in case a key is not found in the dictionary. On the other

hand, the get() method returns None if the key is not found.

Changing and Adding Dictionary elements

Dictionaries are mutable. We can add new items or change the value of existing items using an assignment

operator.

If the key is already present, then the existing value gets updated. In case the key is not present, a new (key:

value) pair is added to the dictionary.

Removing elements from Dictionary

We can remove a particular item in a dictionary by using the pop() method. This method removes an item with

the provided key and returns the value.

The popitem() method can be used to remove and return an arbitrary (key, value) item pair from the

dictionary. All the items can be removed at once, using the clear() method.

We can also use the del keyword to remove individual items or the entire dictionary itself.

Python Dictionary Methods

Python Dictionary items()

The items() method returns a view object that displays a list of dictionary's (key, value) tuple pairs.
The syntax of items() method is:

dictionary.items()

Note: items() method is similar to dictionary's viewitems() method .

The items() method doesn't take any parameters.

The items() method returns a view object that displays a list of a given dictionary's (key, value) tuple pair.

Python Dictionary keys()

The keys() method returns a view object that displays a list of all the keys in the dictionary

The syntax of keys() is:

dict.keys()

keys() doesn't take any parameters.

keys() returns a view object that displays a list of all the keys.

When the dictionary is changed, the view object also reflects these changes.

Python Dictionary fromkeys()

The fromkeys() method creates a new dictionary from the given sequence of elements with a value provided by the user.

The syntax of fromkeys() method is:

dictionary.fromkeys(sequence[, value])

fromkeys() method takes two parameters:

● sequence - sequence of elements which is to be used as keys for the new dictionary

● value (Optional) - value which is set to each each element of the dictionary

fromkeys() method returns a new dictionary with the given sequence of elements as the keys of the dictionary.

If the value argument is set, each element of the newly created dictionary is set to the provided value.

Python Dictionary popitem()

The Python popitem() method removes and returns the last element (key, value) pair inserted into the dictionary.

The syntax of popitem() is:

dict.popitem()

The popitem() doesn't take any parameters.

The popitem() method removes and returns the (key, value) pair from the dictionary in the Last In, First Out (LIFO) order.

● Returns the latest inserted element (key,value) pair from the dictionary.

● Removes the returned element pair from the dictionary.

Note: The popitem() method raises a KeyError error if the dictionary is empty.

Python Dictionary update()

The update() method updates the dictionary with the elements from another dictionary object or from an iterable of

key/value pairs.

The syntax of update() is:

dict.update([other])

The update() method takes either a dictionary or an iterable object of key/value pairs (generally tuples).

If update() is called without passing parameters, the dictionary remains unchanged.

update() method updates the dictionary with elements from a dictionary object or an iterable object of key/value pairs.

It doesn't return any value (returns None).

https://www.programiz.com/python-programming/dictionary
https://www.programiz.com/python-programming/tuple

Python Dictionary setdefault()

The setdefault() method returns the value of a key (if the key is in dictionary). If not, it inserts key with a value to the dictionary.
The syntax of setdefault() is:
dict.setdefault(key[, default_value])

setdefault() Parameters
setdefault() takes a maximum of two parameters:

● key - the key to be searched in the dictionary
● default_value (optional) - key with a value default_value is inserted to the dictionary if the key is not in the dictionary.

If not provided, the default_value will be None.

setdefault() returns:
● value of the key if it is in the dictionary
● None if the key is not in the dictionary and default_value is not specified
● default_value if key is not in the dictionary and default_value is specified

Python Sets

Python Sets

A set is an unordered collection of items. Every set element is unique (no duplicates) and must be immutable

(cannot be changed).

However, a set itself is mutable. We can add or remove items from it.

Sets can also be used to perform mathematical set operations like union, intersection, symmetric difference,

etc.

Creating Python Sets

A set is created by placing all the items (elements) inside curly braces {}, separated by comma, or by using

the built-in set() function.

It can have any number of items and they may be of different types (integer, float, tuple, string etc.). But a set

cannot have mutable elements like lists, sets or dictionaries as its elements.

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/dictionary

Creating an empty set is a bit tricky.

Empty curly braces {} will make an empty dictionary in Python. To make a set without any elements, we use

the set() function without any argument.

Modifying a set in Python

Sets are mutable. However, since they are unordered, indexing has no meaning.

We cannot access or change an element of a set using indexing or slicing. Set data type does not support it.

We can add a single element using the add() method, and multiple elements using the update() method. The

update() method can take tuples, lists, strings or other sets as its argument. In all cases, duplicates are

avoided.

https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string

Removing elements from a set

A particular item can be removed from a set using the methods discard() and remove().

The only difference between the two is that the discard() function leaves a set unchanged if the element is

not present in the set. On the other hand, the remove() function will raise an error in such a condition (if

element is not present in the set).

Similarly, we can remove and return an item using the pop() method.

Since set is an unordered data type, there is no way of determining which item will be popped. It is completely

arbitrary.

We can also remove all the items from a set using the clear() method.

Other Python Set Methods

Python Set add()
The add() method adds a given element to a set. If the element is already present, it
doesn't add any element.
The syntax of add() method is:
set.add(elem)

add() method doesn't add an element to the set if it's already present in it.
Also, you don't get back a set if you use add() method when creating a set object.
noneValue = set().add(elem)

The above statement doesn't return a reference to the set but 'None', because the
statement returns the return type of add which is None.

add() method takes a single parameter:
● elem - the element that is added to the set
add() method doesn't return any value and returns None.

Python Set remove()

The remove() method removes the specified element from the set.

The syntax of the remove() method is:

set.remove(element)

The remove() method takes a single element as an argument and removes it from the set.

The remove() removes the specified element from the set and updates the set. It doesn't return any value.

If the element passed to remove() doesn't exist, KeyError exception is thrown.

https://www.programiz.com/python-programming/set

Python Set discard()
The discard() method removes a specified element from the set (if present).

The syntax of discard() in Python is:

s.discard(x)

discard() method takes a single element x and removes it from the set (if present).

discard() removes element x from the set if the element is present.

This method returns None (meaning, absence of a return value).

Python Set intersection()
The intersection() method returns a new set with elements that are common to all sets.

The syntax of intersection() in Python is:

A.intersection(*other_sets)

intersection() allows arbitrary number of arguments (sets).

Note: * is not part of the syntax. It is used to indicate that the method allows arbitrary number of arguments.

intersection() method returns the intersection of set A with all the sets (passed as argument).

If the argument is not passed to intersection() , it returns a shallow copy of the set (A).

Python Set difference()

The difference() method returns the set difference of two sets.

If A and B are two sets. The set difference of A and B is a set of elements that exists only in set A but not in B.

For example:

The syntax of the set difference() method in Python is:

A.difference(B)

Here, A and B are two sets. The following syntax is equivalent to A-B.

Return Value from difference()

difference() returns the difference between two sets which is also a set. It doesn't modify the original sets.

Python Set difference_update()
The difference_update() updates the set calling difference_update() method with the difference of sets.
If A and B are two sets. The set difference of A and B is a set of elements that exists only in set A but not in B.
The syntax of difference_update() is:
A.difference_update(B)

Here, A and B are two sets. difference_update() updates set A with the set difference of A-B.
difference_update() returns None indicating the object (set) is mutated.
Suppose,
result = A.difference_update(B)

When you run the code,
● result will be None
● A will be equal to A-B
● B will be unchanged

Python Set issubset()
The issubset() method returns True if all elements of a set are present in another set (passed as an

argument). If not, it returns False.

Set A is said to be the subset of set B if all elements of A are in B.

The syntax of issubset() is:

A.issubset(B)

The above code checks if A is a subset of B.

issubset() returns

● True if A is a subset of B

● False if A is not a subset of B

Python Set isdisjoint()

The isdisjoint() method returns True if two sets are disjoint sets. If not, it returns False.

Two sets are said to be disjoint sets if they have no common elements. For example:

A = {1, 5, 9, 0}

B = {2, 4, -5}

Here, sets A and B are disjoint sets.

The syntax of isdisjoint() is:
set_a.isdisjoint(set_b)

isdisjoint() Parameters
isdisjoint() method takes a single argument (a set).

You can also pass an iterable (list, tuple, dictionary, and string) to disjoint(). isdisjoint() method will automatically

convert iterables to set and checks whether the sets are disjoint or not.

Return Value from isdisjoint()
isdisjoint() method returns

● True if two sets are disjoint sets (if set_a and set_b are disjoint sets in above syntax)

● False if two sets are not disjoint sets

THE END

