Python Unit 4-part 4

Dictionary and Set

Python Dictionary

Python dictionary is an unordered collection of items. Each item of a dictionary has a key/value pair.

Dictionaries are optimized to retrieve values when the key is known.

Creating Python Dictionary

Creating a dictionary is as simple as placing items inside curly braces () separated by commas.
An item has a xey and a corresponding vaiue that is expressed as a pair (key: value).

While the values can be of any data type and can repeat, keys must be of immutable type (string, number or tuple with

immutable elements) and must be unique.

we can also create a dictionary using the built-in dict () function.

https://www.programiz.com/python-programming/string
https://www.programiz.com/python-programming/numbers
https://www.programiz.com/python-programming/tuple

Accessing Elements from Dictionary

While indexing is used with other data types to access values, a dictionary uses xeys. Keys can be used either

inside square brackets 1 or with the get () method.

If we use the square brackets (1, keyError is raised in case a key is not found in the dictionary. On the other

hand, the get () method returns vone if the key is not found.

get vs [] for retrieving elements
my dict = {'name': "Jack', 'age': 26

Output: Jack
print(my_dict['name'])

Output: 26
1t(my_dict.get('age'))

Trying to access keys which doesn't exist throws error
Output None
t(my_dict.get('address"))

KeyError
print(my_dict['address'])

Jutput

Jack
26
None

Traceback (most recent call last):
File "<string>", line 15, in <module>
print(my_dict['address'])
KeyError: 'address’

Changing and Adding Dictionary elements

Dictionaries are mutable. We can add new items or change the value of existing items using an assignment

operator.

If the key is already present, then the existing value gets updated. In case the key is not present, a new (key:

value) pair is added to the dictionary.

Changing and adding Dictionary Elements
my dict = {'name’': 'Jack', 'age': 26}

update value
my_dict['age'] = 27

#Output: {'age': 27, "name': "Jack'}
print(my_dict)

add item
my_dict['address'] = ‘Downtown’

Output: {'address’': 'Downtown', ‘'age': 27, "name': "Jack'}
print(my_dict)

Output

{'name’: 'Jack', ‘age': 27}

{'name': 'Jack', ‘'age': 27, 'address’': 'Downtown'}

Removing elements from Dictionary

We can remove a particular item in a dictionary by using the pop () method. This method removes an item with

the provided key and returns the vaiue.

The popitem () method can be used to remove and return an arbitrary (key, value) item pair from the

dictionary. All the items can be removed at once, using the ciear () method.

We can also use the de1 keyword to remove individual items or the entire dictionary itself.

Removing elements from a dictionary

create a dictionary
squares = {1: 1, 2: 4, 3: 9

remove a particular item, returns its value
Output: 16
int(squares.pop(4))

i Outputs {1="1, 2= 4, 3= 9. 5 25}
print(squares)

remove an arbitrary item, return (key,value)
Output: (5, 25)
print(squares.popitem())

Output: {1: 1, 2: 4, 3: 9}
print(squares)

remove all items
squares.clear()

Output: {}
int(squares)

delete the dictionary itself
| squares

Throws Frrar

16
: e bt R s B L
(5:225)
Ll 2::4 03 9%
{}
Traceback (most recent call last):
File “"<string>", line 30, in <module>
print(squares)
NameError: name ‘squares’ is not defined

Python Dictionary Methods

Method
clear()

copy()

fromkeys(seq][, v])

get(keyl,d])

items()

keys()

poplkeyl,d])

popitem()

setdefault(keyl,d])

Description
Removes all items from the dictionary.
Returns a shallow copy of the dictionary.

Returns a new dictionary with keys from seq and value equal to
v (defaults to None).

Returns the value of the key . Ifthe key does not exist, returns
d (defaults to None).

Return a new object of the dictionary's items in (key, value)
format.

Returns a new object of the dictionary's keys.

Removes the item with the key and returns its value or | d if
key is not found. If | d is not provided and the key | is not found,
it raises KeyError .

Removes and returns an arbitrary item (key, value). Raises
KeyError if the dictionary is empty.

Returns the corresponding value if the key is in the dictionary. If
not, inserts the key with avalue of d andreturns d (defaults
to None).

Dictionary Methods
marks = {}.fromkeys(['Math', ‘English’', 'Science'], 0)

Output: {'English': 0, 'Math': 0, 'Science’: 0}
print(marks)

item in marks.items():
print(item)

Output: ['English®, 'Math', 'Science']
print(list(sorted(marks.keys())))

Output

{'Math’: 0, "English’': 0, 'Science’': 0}
('Math", 0)
('English’, 0)

('Science', 0)
['English®, 'Math', 'Science’]

Python Dictionary Comprehension

Dictionary comprehension is an elegant and concise way to create a new dictionary

from an iterable in Python.

Dictionary comprehension consists of an expression pair (key: value) followed by a

for statement inside curly braces {} .

Here is an example to make a dictionary with each item being a pair of a number and

its square.

Dictionary Comprehension
squares = {x: x*x for x in range(6)}

print(squares)

Run Code »

Output

00 41 2 4B QA =G G20 95

Other Dictionary Operations

Dictionary Membership Test

We cantestif a key isin a dictionary or not using the keyword in . Notice that the

membership test is only for the keys and not forthe values .

Membership Test for Dictionary Keys

o

squares =l o 32090 525 e A9 g S}

Output: True
print(1 in squares)

Output: True

1t(2 not in squares)
membership tests for key only not value

Output: False
print(49 in squares)

Run Code »

Output

Iterating Through a Dictionary

We can iterate through each key in a dictionary using a for loop.

Iterating through a Dictionary
squares = {1z 1, 3z 9, 52 25, /:
1 in squares:

print(squares[i])

Dictionary Built-in Functions

Built-in functions like all(), any(), len(), cmp(), sorted() ,etc.are commonly

used with dictionaries to perform different tasks.

Function Description

10 Return True if all keys of the dictionary are True (or if the dictionary is
a

empty).

anyl Return True if any key of the dictionary is true. If the dictionary is empty,
return False .

len() Return the length (the number of items) in the dictionary.

cmpl) Compares items of two dictionaries. (Not available in Python 3)

sorted() Return a new sorted list of keys in the dictionary.

Here are some examples that use built-in functions to work with a dictionary.

Dictionary Built-in Functions
squares; — 10: 0, 10 2= G5

Output: False
print(all(squares))

Output: True
print(any(squares))

Output: 6
print(len(squares))

Output: [0, 1, 3, 5, 7, 9]
t(sorted(squares))

Output

empty dictionary
my dict = {}

dictionary with integer keys
my dict = {1: 'apple’', 2: 'ball'}

dictionary with mixed keys
my dict = {'name’': 'John’, 1:

using dict()
my dict = dict({1:'apple’, 2:'ball'})

from sequence having each item as a pair
my _dict = dict([(1, 'apple’), (2, 'ball’')])

Python Dictionary items()

The items () method returns a view object that displays a list of dictionary's (key, value) tuple pairs.
The syntax of items () method is:

dictionary.items ()

Note: items () method is similar to dictionary's viewitems () method .
The itens () method doesn't take any parameters.

The items () method returns a view object that displays a list of a given dictionary's (key, value) tuple pair.

Example 1: Get all items of a dictionary with items|()

random sales dictionary
sales = { 'apple’': 2, 'orange': 3, 'grapes’': 4 }

print(sales.items())

Output

dict _items([('apple', 2), ('orange', 3), ('grapes’', 4)])

Example 2: How items() works when a dictionary is modified?

random sales dictionary
sales = { 'apple’': 2, 'orange': 3, 'grapes’': 4 }

items = sales.items()

print('Original items:', items)

delete an item from dictionary
del[sales['apple']]
print('Updated items:', items)

Run Code »

Original items: dict_items([('apple’', 2), ('orange’, 3),

(‘grapes’, 4)1)
Updated items: dict_items([('orange’', 3), ('grapes’', 4)])

Python Dictionary keys()

The keys() method returns a view object that displays a list of all the keys in the dictionary

The syntax of keys () is:

dict.keys ()

keys () doesn't take any parameters.
keys () returns a view object that displays a list of all the keys.

When the dictionary is changed, the view object also reflects these changes.

Example 1: How keys() works?

person = {'name’: 'Phill', ‘"age': 22, 'salary': 35
print(person.keys())

empty_dict = {}
print(empty_dict.keys())

Output

dict_keys(['name’', ‘'salary’,

dict_keys([]1)

Example 2: How keys() works when dictionary is updated?

person = {'name’': 'Phill", ‘age': 22,

print(‘Before dictionary is updated®)
keys =

person.keys()
t(keys)

adding an element to the dictionary
person.update({‘salary': 3
print(‘\nAfter dictionary is updated')
print(keys)

Output

Before dictionary is updated
dict_keys(['name’, ‘age'])

After dictionary is updated
dict_keys(['name’', ‘'age', 'salary'])

Python Dictionary fromkeys|()

The fromkeys() method creates a new dictionary from the given sequence of elements with a value provided by the user.
The syntax of fromkeys () method is:

dictionary. fromkeys (sequence[, value])

fromkeys () method takes two parameters:
e sequence - sequence of elements which is to be used as keys for the new dictionary

e value (Optional) - value which is set to each each element of the dictionary

fromkeys () method returns a new dictionary with the given sequence of elements as the keys of the dictionary.

If the value argument is set, each element of the newly created dictionary is set to the provided value.

Example 1: Create a dictionary from a sequence of keys

vowels keys
keys = {'a', 'e', '1', '0', '

vowels = dict.fromkeys(keys)
print(vowels)

{'a': None, 'u’': None, '0': None, ‘e’': None, 'i': None}

Example 2: Create a dictionary from a sequence of keys with

value

vowels keys
keys = {'a', "e", '
value = 'vowel'

vowels = dict.fromkeys(keys, value)
print(vowels)

Run Code »

{'a': 'vowel', 'u': ‘vowel', '0': ‘vowel', 'e': ‘vowel', '1i': 'vowel'}

Python Dictionary popitem()

The Python popitem() method removes and returns the last element (key, value) pair inserted into the dictionary.
The syntax of popitem /() is:

dict.popitem()
The popitem() doesn't take any parameters.

The popitem() method removes and returns the (key, value) pair from the dictionary in the Last In, First Out (LIFO) order.
e Returns the latest inserted element (key,value) pair from the dictionary.

° Removes the returned element pair from the dictionary.

Note: The popitem() method raises a xkeyerror error if the dictionary is empty.

Example: Working of popitem() method

person = {'name’: 'Phill', 'age’: 22, 'salary': 3)}

('salary’, 3500.0) is inserted at the last, so it is removed.
result = person.popitem()

int('Return Value = ', result)
int('person = ', person)

inserting a new element pair

person[‘profession'] = ‘Plumber’

now ('profession’, ‘Plumber®) is the latest element
result = person.popitem()

nt('Return Value = ', result)
nt('person = ', person)

Output

Return Value = ('salary', 3500.0)
person = {'name’': ‘Phill', ‘age': 22}

Return Value = ('profession’, ‘Plumber®)
person = {'name’: ‘Phill', ‘age': 22}

Python Dictionary update()
The update () method updates the dictionary with the elements from another dictionary object or from an iterable of
key/value pairs.
The syntax of update () is:
dict.update ([other])
The update () method takes either a dictionary or an iterable object of key/value pairs (generally tuples).

If upaate () is called without passing parameters, the dictionary remains unchanged.

update () method updates the dictionary with elements from a dictionary object or an iterable object of key/value pairs.

It doesn't return any value (returns vone).

https://www.programiz.com/python-programming/dictionary
https://www.programiz.com/python-programming/tuple

Example 1: Working of update()

1: "one", 2: "three"}
{2: "two"}

updates the value of key 2
d.update(d1)

1t(d)
3: "three"}

adds element with key 3
d.update(d1)

Output

Example 2: update() When Tuple is Passed

dictionary = {'x': 2}

dictionary.update([('y'. 3). ('z"', 0)]1)
print(dictionary)

Run Code »

Here, we have passed a list of tuples [('y', 3), ('z', 0)] tothe update() function.
In this case, the first element of tuple is used as the key and the second element is

used as the value.

Python Dictionary setdefault()

The setdefault() method returns the value of a key (if the key is in dictionary). If not, it inserts key with a value to the dictionary.

The syntax of setdefault () is:
dict.setdefault (key[, default value])

setdefault() Parameters
setdefault () takes a maximum of two parameters:
e key - the key to be searched in the dictionary
e default value (optional) - key with a value default value is inserted to the dictionary if the key is not in the dictionary.

If not provided, the default value will be None.

setdefault () returns:
e value of the key if it is in the dictionary
e None if the key is not in the dictionary and default_value is not specified
® default value if key is Notin the dictionary and default value is specified

Example 1: How setdefault() works when key is in the
dictionary?

person = {'name’': 'Phill’', ‘age': 22}

age = person.setdefault('age’)
print('person = ',person)
print(‘'Age = ' ,age)

Output

person = {'name’': 'Phill’,

Age = 22

Example 2: How setdefault() works when key is not in the
dictionary?

person = {'name’': 'Phill'}

key is not in the dictionary

salary = person.setdefault('salary’)
rint('person = ',person)

print(‘'salary = ',salary)

key is not in the dictionary

default_value is provided

age = person.setdefault('age’, 22)
print('person = ', person)
print(‘'age = ',age)

Output

person {'name’': 'Phill', 'salary': None}
salary None

person {'name’: 'Phill', ‘"age': 22, 'salary':
age =

Python Sets

Python Sets

A set is an unordered collection of items. Every set element is unique (no duplicates) and must be immutable

(cannot be changed).
However, a set itself is mutable. We can add or remove items from it.

Sets can also be used to perform mathematical set operations like union, intersection, symmetric difference,

etc.

Creating Python Sets

A set is created by placing all the items (elements) inside curly braces (}, separated by comma, or by using

the built-in set () function.

It can have any number of items and they may be of different types (integer, float, tuple, string etc.). But a set

cannot have mutable elements like lists, sets or dictionaries as its elements.

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/dictionary

set cannot have duplicates

Output: {1, 2, 3, 4}

my:set =1, 2. 3, 4, 3, 2}
int(my_set)

we can make set from a list
Output: {1, 2, 3}

my_set = set([1, 2, 3, 2])
print(my_set)

set cannot have mutable items
here [3, 4] is a mutable list
this will cause an error.

my _set = {1, 2, [3, 41}

Output

{122, 3. 4}
{1, 2 3%
Traceback (most recent call last):

File "<string>", line 15, in <module>
my_set = {1, 2, [3, 41}
TypeError: unhashable type: 'list®

Creating an empty set is a bit tricky.

Empty curly braces {1 will make an empty dictionary in Python. To make a set without any elements, we use

the set () function without any argument.

Distinguish set and dictionary while creating empty set

initialize a with {}
=1}

check data type of a
C(type(a))

initialize a with set()
= set()

check data type of a
print(type(a))

Output

<class ‘'dict'>

<class ‘'set’'>

Modifying a set in Python
Sets are mutable. However, since they are unordered, indexing has no meaning.

We cannot access or change an element of a set using indexing or slicing. Set data type does not support it.

We can add a single element using the add () method, and multiple elements using the update () method. The

update () method can take tuples, lists, strings or other sets as its argument. In all cases, duplicates are

avoided.

https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string

initialize my_set
my_set = {1, 3}
print(my_set)

my_set[0]

if you uncomment the above line

you will get an error

TypeError: 'set® object does not support indexing

% o o

add an element

Output: {1, 2, 3}
my_set.add(2)
print(my_set)

add multiple elements
Output: {1, 2, 3, 4}
my_set.update([2, 3, 4])
print(my_set)

add list and set

Output: {1, 2, 3, 4, 5, 6, 8}
my_set.update([4, 5], {1, 6, 8})
print(my_set)

Removing elements from a set

A particular item can be removed from a set using the methods discard () and remove ().

The only difference between the two is that the discarda () function leaves a set unchanged if the element is
not present in the set. On the other hand, the remove () function will raise an error in such a condition (if

element is not present in the set).

Difference between discard() and remove()

initialize my_set

my_set = {1, 3, 4, 5, 6}
print(my_set)

discard an element
Output: {1, 3, 5, 6}
my_set.discard(4)
print(my_set)

remove an element
Output: {1, 3, 5}
my_set.remove(6)
print(my_set)

discard an element
not present in my_set

{1, 3, 4, 5, 6}
Output: {1, 3, 5} a.3. 5. 6)
my_set.discard(2) {1. 3. 5}
print (my_set) {1, 3, 5}
Traceback (most recent call last):
remove an element File “"<string>", line 28, in <module>

not present in my_set KeyError: 2
you will get an error.
Output: KeyError

my_set.remove(2)

Similarly, we can remove and return an item using the pop () method.

Since set is an unordered data type, there is no way of determining which item will be popped. It is completely

arbitrary.

We can also remove all the items from a set using the ciear () method.

initialize my_set

Output: set of unique elements
my_set = set("HelloWorld")
print(my_set)

pop an element
Output: random element

nt(my_set.pop())

pop another element

my_set.pop()
print(my_set)

clear my_set
Output: set()

my_set.clear()
print(my_set)

Python Set Operations

Sets can be used to carry out mathematical set operations like union, intersection,

difference and symmetric difference. We can do this with operators or methods.

Let us consider the following two sets for the following operations.

Set Union

Set Union in Python

Unionof A and B is a set of all elements from both sets.

Union is performed using | operator. Same can be accomplished using the 'union()
method.

Set union method

initialize A and B
=12 3 A4 5}
— {4 5.6, 7, 8}

use | operator
Sutputz {1, 2, 3, 4. 5, 6, 7, 8}
print(A | B)

Output

{1 2. 37 4, 5 6 1, 8)

Set Intersection

Set Intersection in Python

Intersection of A and B is a set of elements that are common in both the sets.

Intersection is performed using & operator. Same can be accomplished using the
intersection() method.

Intersection of sets
initialize A and B

= o P R e B

= {4.-5. 6, 7, 8)

use & operator
Output: {4, 5}
print(A & B)

Output

14, 5}

Try the following examples on Python shell.

use intersection function on A
A.intersection(B)

use intersection function on B
> B.intersection(A)
{4, 5}

Set Difference

Set Difference in Python

Difference of the set B fromset A (A - B)is aset of elements that are onlyin A but
notin B.Similarly, B - A isasetofelementsin B butnotin A.

Difference is performed using - operator. Same can be accomplished using the
difference() method.

initialize A and B
= {, PR 7}
= {4, 5,6, 7, 8

use - operator on A
Output: {1, 2, 3}

‘int(A - B)

Output

a2, 3t

Try the following examples on Python shell.

use difference function on A
> A.difference(B)
, 2, 3}

use - operator on B
> B - A

{8. 6,

use difference function on B
- B.difference(A)
{8, 6, 7}

Set Symmetric Difference

Set Symmetric Difference in Python

Symmetric Difference of A and B isasetofelementsin A and B but notin both

(excluding the intersection).

Symmetric difference is performed using ~ operator. Same can be accomplished
using the method symmetric_difference() .

Symmetric difference of two sets
initialize A and B
., 2. 3 ,
= {4,

use A operator

Qutput: {l. 2, 3.6, 7: 8}

Output

Try the following examples on Python shell.

symmetric_difference function on A
.symmetric_difference(B)

2 a 7 Q
45 O / o

symmetric_difference function on B
B.symmetric_difference(A)

2 o A 7 C‘}
L0 Tt O i 1O

Other Python Set Methods

Method
add()

clear()

copy()

difference()
difference_update()
discard()
intersection()
intersection_update()

isdisjoint()
issubset()

issuperset()

Description

Adds an element to the set

Removes all elements from the set

Returns a copy of the set

Returns the difference of two or more sets as a new
set

Removes all elements of another set from this set

Removes an element from the set if it is a member.
(Do nothing if the element is not in set)

Returns the intersection of two sets as a new set

Updates the set with the intersection of itself and
another

Returns True if two sets have a null intersection

Returns True if another set contains this set

Returns True if this set contains another set

popl)

remove()

symmetric_difference()

symmetric_difference_update()

union()

update()

Removes and returns an arbitrary set element.
Raises KeyError if the setis empty

Removes an element from the set. If the element is
not a member, raises a KeyError

Returns the symmetric difference of two sets as a
new set

Updates a set with the symmetric difference of itself
and another

Returns the union of sets in a new set

Updates the set with the union of itself and others

Other Set Operations

Set Membership Test

We can test if an item exists in a set or not, using the in keyword.

in keyword in a set
initialize my_set
my_set = set(“"apple")

check if 'a' is present
Output: True
print(‘a' in my_set)

check if 'p' is present
Output: False
t('p' not in my_set)

Output

Iterating Through a Set

We can iterate through each item in a set using a for loop.

letter in set(“apple™):
yrint(letter)

Built-in Functions with Set

Built-in functions like all() , any() , enumerate() , len(), max() , min() , sorted() ,

sum() etc. are commonly used with sets to perform different tasks.

Function Description
all() Returns True if all elements of the set are true (or if the set is empty).

Returns True if any element of the set is true. If the set is empty,

an
Y0 returns False .
Returns an enumerate object. It contains the index and value for all the
enumerate() .)
items of the set as a pair.
len() Returns the length (the number of items) in the set.
max() Returns the largest item in the set.
min() Returns the smallest item in the set.
ted() Returns a new sorted list from elements in the set(does not sort the set
sorte

itself).

sum() Returns the sum of all elements in the set.

Python Set add()

The add () method adds a given element to a set. If the element is already present, it
doesn't add any element.
The syntax of add () method is:
set.add (elem)
add () method doesn't add an element to the set if it's already present in it.
Also, you don't get back a set if you use add () method when creating a set object.
noneValue = set() .add(elem)
The above statement doesn't return a reference to the set but 'None', because the
statement returns the return type of add which is nNone.

add () method takes a single parameter:
e elem - the element that is added to the set
add () method doesn't return any value and returns None.

Example 1: Add an element to a set

set of vowels
vowels = {'a', 'e’,

adding ‘o’

vowels.add('0")
print('Vowels are:', vowels)

adding 'a' again
vowels.add('a")
print('Vowels are:', vowels)

Output

Vowels are: {'a’,

Vowels are: {'a’,

Note: Order of the vowels can be different.

Python Set remove()

The remove () method removes the specified element from the set.

The syntax of the remove () method is:
set.remove (element)
The remove () method takes a single element as an argument and removes it from the set.

The remove () removes the specified element from the set and updates the set. It doesn't return any value.

If the element passed to remove () doesn't exist, KeyError exception is thrown.

https://www.programiz.com/python-programming/set

Example 1: Remove an Element From The Set

language set
language = {'English’, ‘French’, ‘German’}

removing ‘German’ from language
language.remove('German’)

Updated language set
print(‘Updated language set:', language)

Output

Updated language set: {'English', 'French'}

Example 2: Deleting Element That Doesn't Exist

animal set
animal = {'cat', 'dog', 'rabbit’', ‘'guinea pig'}

Deleting 'fish' element
animal.remove(' fish")

Updated animal
rint('Updated animal set:', animal)

Output

Traceback (most recent call last):
File "<stdin>", line 5, in <module>

animal.remove(' fish')
KeyError: 'fish®

Python Set discard()

The discard() method removes a specified element from the set (if present).
The syntax of discard() in Python is:

s.discard (x)

discard () method takes a single element x and removes it from the set (if present).

discard () removes element x from the set if the element is present.

This method returns none (Meaning, absence of a return value).

numbers = {2,

numbers.discard(3)
print('numbers = ', numbers)

numbers.discard(10)
print('numbers = ', numbers)

Output

numbers

numbers

numbers = {2, 3, 5, 4}

Returns None
Meaning, absence of a return value
print(numbers.discard(3))

print('numbers =', numbers)

Output

None

numbers = {2, 4, 5}

Python Set intersection()

The intersection () method returns a new set with elements that are common to all sets.

The syntax of intersection() in Python is:

A.intersection(*other_ sets)
intersection () allows arbitrary number of arguments (sets).

Note: = is not part of the syntax. It is used to indicate that the method allows arbitrary number of arguments.

intersection () method returns the intersection of set » with all the sets (passed as argument).

If the argument is not passed to intersection (), it returns a shallow copy of the set ().

Example 1: Python Set intersection()

.intersection(A))
.intersection(C))

.intersection(C))

.intersection(A, B))

Output

Example 3: Set Intersection Using & operator

You can also find the intersection of sets using & operator.

2
20

Int(A & C)
nt(A & D)

1t(A & C & D)
1t(A & B & C & D)

Output

Python Set difference()

The difference() method returns the set difference of two sets.

If 2 and B are two sets. The set difference of 2 and s is a set of elements that exists only in set a but not in s.

For example:

The syntax of the set difference () method in Python is:
A.difference (B)

Here, 2 and & are two sets. The following syntax is equivalent to »-z.

Return Value from difference()

difference () returns the difference between two sets which is also a set. It doesn't modify the original sets.

Example 1: How difference() works in Python?

{'a’,
TG

Equivalent to A-B
print(A.difference(B))

Equivalent to B-A
print(B.difference(A))

Python Set difference_update()

The difference_update() updates the set calling difference_update() method with the difference of sets.
If ~ and B are two sets. The set difference of » and & is a set of elements that exists only in set a but not in &.
The syntax of difference_update() is:

A.difference update (B)
Here, 2 and & are two sets. difference update () updates set a with the set difference of a-s.

difference update () returns none indicating the object (set) is mutated.
Suppose,

result = A.difference update (B)

When you run the code,
® result Will be None
e 1 will be equal to a-8
e & will be unchanged

Example: How difference_update() works?

{0
{lCl' L] L]

result .difference_update(B)

A=A
‘B ‘", B)
'result = ', result)

Output

Python Set issubset()

The issubset() method returns True if all elements of a set are present in another set (passed as an

argument). If not, it returns False.

Set » is said to be the subset of set & if all elements of ~ are in s.

The syntax of issubset () Is:

A.issubset (B)

The above code checks if 2 is a subset of s.

issubset () returns

e rTrue if Ais asubset of B

e ralse if Ais not a subset of B

Returns True
t(A.issubset(B))

Returns False
B is not subset of A
‘int(B.1ssubset(A))

Returns False
int(A.issubset(C))

Returns True
1t (C.1issubset(B))

Output

Python Set isdisjoint()

The isdisjoint() method returns True if two sets are disjoint sets. If not, it returns False.
Two sets are said to be disjoint sets if they have no common elements. For example:

A = {1, 5, 9, 0}

B = {2, 4, -5}

Here, sets 2 and B are disjoint sets.

The syntax of isdisjoint () is:

set a.isdisjoint (set b)

isdisjoint() Parameters

isdisjoint () method takes a single argument (a set).
You can also pass an iterable (list, tuple, dictionary, and string) to disjoint (). isdisjoint () method will automatically

convert iterables to set and checks whether the sets are disjoint or not.

Return Value from isdisjoint()

isdisjoint () method returns
e true if two sets are disjoint sets (if set_a and set 1 are disjoint sets in above syntax)

e ralse if two sets are not disjoint sets

Example 1: How isdisjoint() works?

print('Are A and B disjoint?', A.isdisjoint(B))
rint('Are A and C disjoint?', A.isdisjoint(C))

Output

Are A and B disjoint? True

Are A and C disjoint? False

Example 2: isdisjoint() with Other Iterables as arguments

'b'}
& 2%

and B disjoint?', A.isdisjoint(B))
and C disjoint?', A.isdisjoint(C))
and D disjoint?', A.isdisjoint(D))
and E disjoint?', A.isdisjoint(E))

Output

Are A and B disjoint? False
Are A and C disjoint? False

Are A and D disjoint? True
Are A and E disjoint? False

THE END

