
OPERATING SYSTEMS
MODULE 3

CPU SCHEDULING

 Misna VK

 asst.professor

 Dept of CS

 Nasra college of arts and science,Tirurkad

SYNCHRONIZATION HARDWARE

• In operating systems, "synchronization hardware" refers to a

set of specialized hardware instructions that enable efficient

coordination between concurrent processes accessing shared

resources, preventing data corruption by ensuring only one

process can modify a critical section of data at a time;

• essentially acting as a locking mechanism to manage access to

shared data.

There are three algorithms in the hardware approach of solving Process Synchronization problem:
1.Test and Set

2.Swap/disable-enable interrupts

3.Mutex

Hardware instructions in many operating systems help in the effective solution of critical section
problems.

1.Test and set
• Here, the shared variable is lock which is initialized to false.and when a process found this

lock=false,it means critical section is free.so it will enter the critical section and then set
lock=true;

• When another process comes,lock will be true.so the process should wait until lock
becomes false again.

• The process in critical section will execute the critical section and when it exit it again set
lock=false;so other waiting processes can enter the critical section.

2. Swap/enable-disable interrupts

• This is a simple solution for critical section problem.
• It simply prevents a process from being interrupted while it

executes the critical section.
• Unfortunately, it does not work well for multiprocessor

environments,due to the difficulty in enabling and disabling
interrupts on all processors (time consuming)

3. Mutex

• A mutex lock in an operating system (OS) is a binary variable that
prevents multiple threads from simultaneously accessing a shared
resource. Mutex stands for mutual exclusion.

• A thread/process while entering to critical section it will lock the mutex.
• And after finishing execution it set mutex=unlock while leaving the cs.
• Any other process trying to access the critical section should wait if,the

mutex found locked.

CLASSICAL PROBLEMS OF SYNCHRONIZATION

Below are some of the classical problem depicting flaws of process synchronaization in systems
where cooperating processes are present.

1.Bounded Buffer (Producer-Consumer) Problem
2.Dining Philosophers Problem
3.The Readers Writers Problem

Bounded Buffer (Producer-Consumer) Problem
Because the buffer pool has a maximum size, this problem is often called
the Bounded buffer problem.
•This problem is generalised in terms of the Producer Consumer problem, where
a finite buffer pool is used to exchange messages between producer and
consumer processes.
•There will be 2 concurrent process ,one producer and one consumer and share a
common buffer.

•In this Producers mainly produces a product and consumers consume the product,
but both can use of one of the containers each time.

•The main complexity of this problem is that we must have to maintain the count
for both empty and full containers that are available.

Dining Philosophers Problem
•The dining philosopher's problem involves the allocation of limited resources to a
group of processes in a deadlock-free and starvation-free manner.

•There are five philosophers sitting around a table, in which there are five
chopsticks/forks kept beside them and a bowl of rice in the centre, When a
philosopher wants to eat, he uses two chopsticks - one from their left and one from
their right. When a philosopher wants to think, he keeps down both chopsticks at
their original place.

• The problem is to ensure that no philosopher will be allowed to

starve because he cannot ever pick up both forks.

• There are 2 issues here:first, deadlock(where each philosopher

picks up one fork so none can get the second.) must never

occure.

• Second no set of philosophers should be able to prevent

another philosopher fromever eating.

The Readers Writers Problem
• In this problem there are some processes(called readers)

that only read the shared data, and never change it, and
there are other processes(called writers) who may change
the data in addition to reading, or instead of reading it.

• Here multiple readers can access the object
concurrently,but if a writer is accessing the object,no
other processes(reader/writer) may access the object

File And database system

 A file is a named collection of related information that is recorded on secondary storage such as

magnetic disks, magnetic tapes and optical disks. In general, a file is a sequence of bits, bytes,

lines or records whose meaning is defined by the files creator and user.

File Structure
 A File Structure should be according to a required format that the operating system can

understand.

• A file has a certain defined structure according to its type.

• A text file is a sequence of characters organized into lines.

File functions of organization
 File access mechanism refers to the manner in which the records of a file may be accessed. There

are several ways to access files −

• Sequential access

• Direct/Random access

• Indexed sequential access

Sequential access

A sequential access is that in which the records are accessed in some sequence, i.e., the

information in the file is processed in order, one record after the other. This access

method is the most primitive one. Example: Compilers usually access files in this fashion.

Direct/Random access

• Random access file organization provides, accessing the records directly.

 • Each record has its own address on the file with by the help of which it can be directly

accessed for reading or writing.

• The records need not be in any sequence within the file and they need not be in

adjacent locations on the storage medium.

Indexed sequential access

• This mechanism is built up on base of sequential access.

• An index is created for each file which contains pointers to various blocks.

• Index is searched sequentially and its pointer is used to access the file directly

Space Allocation
 Files are allocated disk spaces by operating system. Operating systems deploy following

three main ways to allocate disk space to files.

• Contiguous Allocation

• Linked Allocation

• Indexed Allocation

Contiguous Allocation

• Each file occupies a contiguous address space on disk.

• Assigned disk address is in linear order.

• Easy to implement.

• External fragmentation is a major issue with this type of allocation technique.

Linked Allocation

• Each file carries a list of links to disk blocks.

• Directory contains link / pointer to first block of a file.

• No external fragmentation

• Effectively used in sequential access file.

 • Inefficient in case of direct access file.

Indexed Allocation

• Provides solutions to problems of contiguous and linked allocation.

 • A index block is created having all pointers to files.

• Each file has its own index block which stores the addresses of disk space occupied by the

file.

• Directory contains the addresses of index blocks of files.

Allocation and free space management

The system keeps tracks of the free disk blocks for allocating space to files when they are

created. Also, to reuse the space released from deleting the files, free space management

becomes crucial. The system maintains a free space list which keeps track of the disk blocks

that are not allocated to some file or directory. The free space list can be implemented mainly

as:

1. Bitmap or Bit vector

– A Bitmap or Bit Vector is series or collection of bits where each bit corresponds to a disk

block. The bit can take two values: 0 and 1: 0 indicates that the block is allocated and 1

indicates a free block. The given instance of disk blocks on the disk in Figure 1 (where green

blocks are allocated) can be represented by a bitmap of 16 bits as:0000111000000110.

2. Linked List

 – In this approach, the free disk blocks are linked together i.e. a free block contains a pointer

to the next free block. The block number of the very first disk block is stored at a separate

location on disk and is also cached in memory

In Figure-2, the free space list head points to Block 5 which points to Block 6, the next free

block and so on. The last free block would contain a null pointer indicating the end of free list.

3. Grouping
– This approach stores the address of the free blocks in the first free block. The first free block

stores the address of some, say n free blocks. Out of these n blocks, the first n-1 blocks are

actually free and the last block contains the address of next free n blocks. An advantage of this

approach is that the addresses of a group of free disk blocks can be found easily.

 4. Counting
– This approach stores the address of the first free disk block and a number n of free

contiguous disk blocks that follow the first block. Every entry in the list would contain: 1.

Address of first free disk block 2. A number n For example, in Figure-1, the first entry of the

free space list would be: ([Address of Block 5], 2), because 2 contiguous free blocks follow

block 5.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

