
W E B

D E S I G N I N G

U N I T 3 (J A V A S C R I P T)

What is JavaScript

• JavaScript was initially created to “make web pages alive”.
• The programs in this language are called scripts. They can be written right in a web

page’s HTML and run automatically as the page loads.
• Scripts are provided and executed as plain text. They don’t need special preparation

or compilation to run.
• JavaScript is an object-based scripting language which is lightweight and cross-

platform.
• JavaScript is not a compiled language, but it is a translated language.
• The JavaScript Translator (embedded in the browser) is responsible for translating the

JavaScript code for the web browser.
• JavaScript is a very powerful client-side scripting language. JavaScript is used

mainly for enhancing the interaction of a user with the webpage. In other words,
you can make your webpage more lively and interactive, with the help of
JavaScript. JavaScript is also being used widely in game development and mobile
application development.

• JavaScript (js) is a light-weight object-oriented programming language which is used by several
websites for scripting the webpages. It is an interpreted, full-fledged programming language that
enables dynamic interactivity on websites when applied to an HTML document. JavaScript was
developed by Brendan Eich in 1995, which appeared in Netscape, a popular browser of that
time. Since then, it has been adopted by all other graphical web browsers. With JavaScript, users
can build modern web applications to interact directly without reloading the page every time. The
traditional website uses js to provide several forms of interactivity and simplicity.

• The language was initially called LiveScript and was later renamed JavaScript.

• Being a scripting language, JavaScript cannot run on its own. In fact, the browser is
responsible for running JavaScript code. When a user requests an HTML page with JavaScript
in it, the script is sent to the browser and it is up to the browser to execute it. The main
advantage of JavaScript is that all modern web browsers support JavaScript. So, you do not
have to worry about whether your site visitor uses Internet Explorer, Google Chrome, Firefox or
any other browser. JavaScript will be supported. Also, JavaScript runs on any operating
system including Windows, Linux or Mac.

When most people get interested in web development, they start with good old HTML and CSS. From there,
they move on to JavaScript, which makes sense, because , these three elements together form the
backbone of web development.
•HTML is the structure of your page like the headers, the body text, any images you want to include. It
basically defines the contents of a web page.
•CSS controls how that page looks (it’s what you’ll use to customize fonts, background colors, etc.).
•JavaScript is the third element. Once you’ve created your structure (HTML) and your aesthetic vibe (CSS),
JavaScript makes your site dynamic (automatically updateable).

What is JavaScript Used For?

•Web Applications: JavaScript is used for adding interactivity and automation to websites.
•Mobile Applications: JavaScript is also used for developing applications for phones and tablets. With
frameworks like React Native, you can develop full-fledged mobile applications with all those fancy
animations.
•Web-based Games: If you’ve ever played a game directly on the web browser, JavaScript was probably used
to make that happen.
•Back-end Web Development: JavaScript has traditionally been used for developing the front-end parts of a
web application. However, with the introduction of NodeJS, a prevalent back-end JavaScript framework,
things have changed. And now, JavaScript is used for developing the back-end structure also.
•Smartwatch Apps, art, presentations… etc.

JavaScript advantages

•Fast speed: JavaScript is executed on the client side that’s why it is very fast.
•Easy to learn: JavaScript is easy to learn. Any one which have basic knowledge of
programming can easily lean JavaScript.
•Versatility: It refers to lots of skills. It can be used in a wide range of applications.
•Browser Compatible: JavaScript supports all modern browsers. It can execute on any
browser and produce same result.
•Server Load: JavaScript reduce the server load as it executes on the client side.
•Rich interfaces: JavaScript provides the drag and drop functionalities which can
provides the rich look to the web pages.
•Popularity: JavaScript is a very popular web language because it is used every where
on the web.
•Regular Updates: JavaScript updated annually by ECMA.
•Interoperability − Because JavaScript seamlessly integrates with other programming
languages, many developers favour using it to create a variety of applications. Any
webpage or the script of another programming language can contain it.

JavaScript disadvantages

•Code Visibility: JavaScript code is visible to every one and this is the biggest
disadvantage of JavaScript.
•Stop Render: One error in JavaScript code can stop whole website to render.
•No Multiple Inheritance: JavaScript only support single inheritance.

•Cannot Debug − Although some HTML editors allow for debugging, they are not as
effective as editors for C or C++. Additionally, the developer has a difficult time
figuring out the issue because the browser doesn't display any errors.
•Client-side Security − The user can see the JavaScript code; it could be misused by
others. These actions might involve using the source code anonymously. Additionally, it
is very simple to insert code into the website that impair the security of data
transmitted via the website.
•Browser Support − Depending on the browser, JavaScript is interpreted differently.
Therefore, before publication, the code needs to run on various platforms. We also
need to check the older browsers because some new functions are not supported by
them.

A Simple JavaScript Program
You should place all your JavaScript code within <script> tags (<script> and </script>) if you are keeping
your JavaScript code within the HTML document itself. This helps your browser distinguish your
JavaScript code from the rest of the code.

 Syntax:
 <script>

// JavaScript Code
</script>

Example:

<html>
<body>

<script language="javascript" type="text/javascript">
document.write("Hello World!");

</script>
</body>

</html>

WRITING JAVASCRIPT IN HTML
How to add JavaScript to html

JavaScript programs cannot get executed without the help of HTML or without integrated into HTML code.
Javascript is used in several ways in web pages such as generate warning messages, build image galleries,
DOM manipulation, form validation, and more.
There are following three ways in which users can add JavaScript to HTML pages.

1.Embedding code
2.Inline code
3.External file

1. Embedding code:-

To add the JavaScript code into the HTML pages, we can use the <script>.....</script> tag of the HTML
that wrap around JavaScript code inside the HTML program. Users can also define JavaScript code in
the <body> tag (or we can say body section) or <head> tag because it completely depends on the
structure of the web page that the users use.

<!DOCTYPE html >
<html>
<head>
<title> page title</title>
<script>
document.write("Welcome to Javascript");
</script>
</head>
<body>
<p>output will be same in embedded javascript for both head or body </p>
</body>
</html>

https://www.javatpoint.com/html-body-tag
https://www.javatpoint.com/html-head

OR

<!DOCTYPE html >
<html>
<head>
<title> page title</title>
</head>
<body>
<script>
document.write("Welcome to Javascript");
</script>
<p>output will be same in embedded javascript for both head or body </p>
</body>
</html>

2.Inline code:-

Generally, this method is used when we have to call a function in the HTML event attributes. There are many cases (or
events) in which we have to add JavaScript code directly eg., OnMover event,OnClick etc.
Let's see with the help of an example, how we can add JavaScript directly in the html without using the <script>....
</script> tag.

<!DOCTYPE html >
<html>
<head>
<title> page title</title>
</head>
<body>
<p>
Click Me
</p>
<p> in this example we saw how to use inline JavaScript or directly in an HTML tag. </p>
</body>
</html>

3.External file:-

We can also create a separate file to hold the code of JavaScript with the (.js) extension and later
incorporate/include it into our HTML document using the src attribute of the <script> tag. It
becomes very helpful if we want to use the same code in multiple HTML documents. It also
saves us from the task of writing the same code over and over again and makes it easier to
maintain web pages.

<html>
<head>
<meta charset="utf-8">
<title>Including a External JavaScript File</title>
</head>
<body>
<form>
<input type="button" value="Result" onclick="display()"/>
</form>
<script src="hello.js">
</script>
</body>
</html>

Now let's create separate JavaScript file

Hello.js

function display()
{
alert("Hello World!");
}

The HTML noscript Element
The <noscript> element provides us an alternate way to create content for the users that
either have browsers that don’t support the JavaScript or have disabled JavaScript in the
browser.
This element can contain any HTML element other than the <script> tag that can be included
in the <HTML> element.

<!DOCTYPE html>
<html>
<body>
<h1>The noscript element</h1>
<p>If the user have a browser with JavaScript disabled will show the text inside the noscript
element and "Hello World!" will not be displayed.</p>
<script>
document.write("Hello World!")
</script>
<noscript>Sorry, your browser may not support JavaScript! orJavaScript is disabled in your br
owser </noscript>
</body>
</html>

Javascript Operators

JavaScript operators are symbols that are used to perform operations on operands.An

operator performs some operation on single or multiple operands (data value) and
produces a result. For example, in 1 + 2, the + sign is an operator and 1 is left side
operand and 2 is right side operand. The + operator performs the addition of two

numeric values and returns a result.
Let us take a simple expression 4 + 5 is equal to 9. Here 4 and 5 are

called operands and ‘+’ is called the operator.
JavaScript includes following categories of operators.

1.Arithmetic Operators
2.Comparison Operators
3.Logical (or relational) Operators
4.Assignment Operators
5.Conditional operators
6.Bitwise Operators
7.Typeof Operator

1.Arithmetic Operators
Arithmetic operators are used to perform mathematical operations between numeric
operands.
The following example demonstrates how arithmetic operators perform different
tasks on operands.

Operator Description Example

+ Addition 10+20 = 30

- Subtraction 20-10 = 10

* Multiplication 10*20 = 200

/ Division 20/10 = 2

% Modulus (Remainder) 20%10 = 0

++ Increment var a=10; a++; Now a = 11

-- Decrement var a=10; a--; Now a = 9

Example: Arithmetic Operation
let x = 5, y = 10;
let z = x + y; //performs addition and returns 15
z = y - x; //performs subtraction and returns 5
z = x * y; //performs multiplication and returns 50
z = y / x; //performs division and returns 2
z = x % 2; //returns division remainder 1
x++; //post-increment, x will be 5 here and 6 in the next line
++x; //pre-increment, x will be 7 here
x--; //post-decrement, x will be 7 here and 6 in the next line
--x; //pre-decrement, x will be 5 here

The ++ and -- operators are unary operators. It works with either left or right operand
only. When used with the left operand, e.g., x++, it will increase the value of x when

the program control goes to the next statement. In the same way, when it is used with
the right operand, e.g., ++x, it will increase the value of x there only. Therefore, x++ is
called post-increment, and ++x is called pre-increment.

String Concatenation
The + operator performs concatenation operation when one of the operands is of

string type. The following example demonstrates string concatenation even if one
of the operands is a string.

let a = 5, b = "Hello ", c = "World!", d = 10;
a + b; //returns "5Hello "
b + c; //returns "Hello World!"
a + d; //returns 15
b + true; //returns "Hello true"
c - b; //returns NaN; - operator can only used with numbers

2.Comparison Operators
JavaScript provides comparison operators that compare two operands and return
a boolean value true or false.

Operators Description

== Compares the equality of two operands without considering type.

=== Compares equality of two operands with type.

!= Compares inequality of two operands.

> Returns a boolean value true if the left-side value is greater than the

right-side value; otherwise, returns false.

< Returns a boolean value true if the left-side value is less than the right-

side value; otherwise, returns false.

>= Returns a boolean value true if the left-side value is greater than or equal

to the right-side value; otherwise, returns false.

<= Returns a boolean value true if the left-side value is less than or equal to

the right-side value; otherwise, returns false.

Example: JavaScript Comparison Operators
let a = 5, b = 10, c = "5";
let x = a; a == c; // returns true
a === c; // returns false
a == x; // returns true
a != b; // returns true
a > b; // returns false
a < b; // returns true
a >= b; // returns false
a <= b; // returns true

3. Logical Operators
In JavaScript, the logical operators are used to combine two or more conditions.
JavaScript provides the following logical operators.

Operator Description

&& && is known as AND operator. It checks whether two operands

are non-zero or not (0, false, undefined, null or "" are considered

as zero). It returns 1 if they are non-zero; otherwise, returns 0.

|| || is known as OR operator. It checks whether any one of the two

operands is non-zero or not (0, false, undefined, null or "" is

considered as zero). It returns 1 if any one of of them is non-zero;

otherwise, returns 0.

! ! is known as NOT operator. It reverses the boolean result of the

operand (or condition). !false returns true, and !true returns false.

Example: Logical Operators
let a = 5, b = 10; (a != b) && (a < b); // returns true
(a > b) || (a == b); // returns false
(a < b) || (a == b); // returns true
!(a < b); // returns false
!(a > b); // returns true
Try

4. Assignment Operators
JavaScript provides the assignment operators to assign values to
variables with less key strokes.

Assignment operators Description

= Assigns right operand value to the left operand.

+= Sums up left and right operand values and assigns the result to

the left operand.

-= Subtract right operand value from the left operand value and

assigns the result to the left operand.

*= Multiply left and right operand values and assigns the result to

the left operand.

/= Divide left operand value by right operand value and assign the

result to the left operand.

%= Get the modulus of left operand divide by right operand and

assign resulted modulus to the left operand.

Example: Assignment operators
let x = 5, y = 10, z = 15;
x = y; //x would be 10
x += 1; //x would be 6
x -= 1; //x would be 4
x *= 5; //x would be 25
x /= 5; //x would be 1
x %= 2; //x would be 1

5. Conditional Operators

JavaScript Conditional Operators allow us to perform different types of actions according to
different conditions. We make use of the ‘if’ statement.

if(expression){
do this;
}

The above argument named ‘expression’ is basically a condition that we pass into the ‘if’ and if it
returns ‘true’ then the code block inside it will be executed otherwise not.
• // if example
let age = 20;
if(age == 20){
console.log('Hola!'); // Hola! Will be the output
}

• if(0){
console.log('hey'); // Will not be printed
}

• if(1){
console.log('Yo')// Will print Yo
}

https://www.geeksforgeeks.org/javascript-if-else/

• if(this is true){
do this;

}
else{

do this;
}

• // else example
let age = 21;
if(age == 20){

console.log('You are 20'); // Not executed
}else{

console.log('Adios!'); // Will be alerted
}

• if(expression){
do this;
}
else if(expression){
do this;
}
else{
do this;
}

Eg:

// The else-if example
let age = 22;
if(age < 18){

console.log('Too Young.');
}else if(age > 18 && age < 60) {

console.log(‘hello'); // hello will be printed
}else {

console.log(‘too old');
}

Ternary Operator: In Javascript we also have a ternary operator which is a very short way of
performing an action on based of a condition.

let result = condition ? value1 : value2;

It works similarly to an if-else, where based on a condition we evaluate on the result. In the
above code snippet if the ‘condition’ evolves to ‘true’ then ‘value1’ will be executed otherwise
‘value2’ will be executed.
Eg:
// Ternary Operator Example
let age = 20;
let result = age>18 ? 'Great' : 'Not so great';
console.log(result); // Great

Example: Ternary operator
let a = 10, b = 5;
let c = a > b? a : b; // value of c would be 10
let d = a > b? b : a; // value of d would be 5

https://www.geeksforgeeks.org/javascript-ternary-operator/

6.Bitwise Operators
The bitwise operators perform bitwise operations on operands.
The bitwise operators are as follows:

Operator Description Example

& Bitwise AND (10==20 & 20==33) = false

| Bitwise OR (10==20 | 20==33) = false

^ Bitwise XOR (10==20 ^ 20==33) = false

~ Bitwise NOT (~10) = -10

<< Bitwise Left Shift (10<<2) = 40

>> Bitwise Right Shift (10>>2) = 2

>>> Bitwise Right Shift with Zero (10>>>2) = 2

7.typeof Operator
The typeof operator is a unary operator that is placed before its single operand,
which can be of any type. Its value is a string indicating the data type of the
operand.
The typeof operator evaluates to "number", "string", or "boolean" if its operand is
a number, string, or boolean value and returns true or false based on the
evaluation.
Here is a list of the return values for the typeof Operator. Type String Returned by typeof

Number "number"

String "string"

Boolean "boolean"

Object "object"

Function "function"

Undefined "undefined"

Null "object"

Javascript Data Types

JavaScript provides different data types to hold different types of values. There are two types of data types in
JavaScript.
1.Primitive data type
2.Non-primitive (reference) data type
JavaScript is a dynamic type language, means you don't need to specify type of the variable because it is
dynamically used by JavaScript engine. You need to use var here to specify the data type. It can hold any type
of values such as numbers, strings etc. For example:
1.var a=40;//holding number
2.var b="Rahul";//holding string

JavaScript primitive data types
There are five types of primitive data types in JavaScript. They are as follows:

Data Type Description

String represents sequence of characters e.g. "hello"

Number represents numeric values e.g. 100

Boolean represents boolean value either false or true

Undefined represents undefined value

Null represents null i.e. no value at all

JavaScript non-primitive data types

The non-primitive data types are as follows:
Data Type Description

Object represents instance through
which we can access members

Array represents group of similar
values

JavaScript Values
The JavaScript syntax defines two types of values:

•Fixed values
•Variable values
Fixed values are called Literals.

Variable values are called Variables.

JavaScript Literals
The two most important syntax rules for fixed values are:

1. Numbers are written with or without decimals
2. Strings are text, written within double or single quotes

variables
One of the basic constructs of JavaScript is the variable. Variables are used to store and manipulate data.
They are declared using the keyword “var,” “let,” or “const.” The difference between “var,” “let,” and “const”
is the scope and the ability to reassign the value. “Var” is function scope (they are only accessible within the
function in which they are declared), “let” is block scope (they are only accessible within the block of code in
which they are declared), and “const” is block scope and cannot be reassigned (if you try to reassign a value
to a variable declared with “const,” you will get an error).
// How to create variables:
var x;
let y;
// How to use variables:
x = 5;
y = 6;
let z = x + y;
In a programming language, variables are used to store data values.
JavaScript uses the keywords var, let and const to declare variables.
An equal sign is used to assign values to variables.

In this example, x is defined as a variable. Then, x is assigned (given) the value 6:

let x;
x = 6;

JavaScript Expressions
An expression is a block of code that evaluates to a value. A statement is any block of code that is
performing some action.
JavaScript’s expression is a valid set of literals, variables, operators, and expressions that evaluate
a single value that is an expression. This single value can be a number, a string, or a logical value
depending on the expression.
An expression is any valid unit of code that resolves to a value.
Conceptually speaking, there are two kinds of expressions: those that perform some sort of assignment
and those that evaluate to a value.
For example,x=10 is an expression that performs an assignment. This expression itself evaluates to 1010.
Such expressions make use of the assignment operator.
On the flip side, the expression ,10+5 simply evaluates to 1919. These expressions make use of
simple operators.
Eg:

Result=x+y/z

Result=2+4/2

JavaScript has the following expression categories:
•Arithmetic: evaluates to a number, for example 3.14159.

•String: evaluates to a character string, for example, "Fred" or "234".

•Logical: evaluates to true or false.

•Primary expressions: Basic keywords and general expressions in JavaScript.

•Left-hand-side expressions: Left values are the destination of an assignment.

Primary expressions
Primary expressions consist of basic keywords in JavaScript.
this
this is used to refer to the current object; it usually refers to the method or object that calls it.
this is used either with the dot operator or the bracket operator.

this['element']
this.element

Grouping operator
The grouping operator () is used to determine the evaluation precedence of expressions. For example, the two
expressions below evaluate to different results because the order of operations is different in both of them.

Eg: a * b - c
a * (b - c)

a * b - c applies the multiplication operator first and then evaluates the result of the multiplication with -c. While a * (b - c)
evaluates the brackets first.

Left-hand side expressions
 new

new creates an instance of the object specified by the user and has the following prototype.
 var objectName = new objectType([param1, param2, ..., paramN]);

super
super calls on the current object’s parent and is useful in classes to call the parent object’s constructor.

super([arguments]); // parent constructor
super.method(args...) // parent's method

JavaScript Array

JavaScript array is an object that represents a collection of similar type of elements.
There are 3 ways to construct array in JavaScript
1.By array literal
2.By creating instance of Array directly (using new keyword)
3.By using an Array constructor (using new keyword)

1) JavaScript array literal

The syntax of creating array using array literal is given below:
var arrayname=[value1,value2.....valueN];

As you can see, values are contained inside [] and separated by , (comma).
Eg:
<script>
var emp=["Sonoo","Vimal","Ratan"];
for (i=0;i<emp.length;i++){
document.write(emp[i] + "
");
}
</script>
The .length property returns the length of an array.
Output of the above example:
Sonoo

Vimal

Ratan

2) JavaScript Array directly (new keyword)
The syntax of creating array directly is given below:

var arrayname=new Array();
Here, new keyword is used to create instance of array.
Eg:
<script>
var i;
var emp = new Array();
emp[0] = "Arun";
emp[1] = "Varun";
emp[2] = "John";

for (i=0;i<emp.length;i++){
document.write(emp[i] + "
");
}
</script>
Output of the above example:
Arun

Varun

John

3) JavaScript array constructor (new keyword)
Here, you need to create instance of array by passing arguments in constructor so that we
don't have to provide value explicitly.
Eg:
<script>
var emp=new Array("Jai","Vijay","Smith");
for (i=0;i<emp.length;i++){
document.write(emp[i] + "
");
}
</script>
Output of the above example:
Jai

Vijay

Smith

Description

concat() It returns a new array object that contains two or more merged arrays.

copywithin() It copies the part of the given array with its own elements and returns the modified array.

entries() It creates an iterator object and a loop that iterates over each key/value pair.

every() It determines whether all the elements of an array are satisfying the provided function conditions.

fill() It fills elements into an array with static values.

from() It creates a new array carrying the exact copy of another array element.

find() It returns the value of the first element in the given array that satisfies the specified condition.

findIndex() It returns the index value of the first element in the given array that satisfies the specified condition.

forEach() It invokes the provided function once for each element of an array.

includes() It checks whether the given array contains the specified element.

indexOf() It searches the specified element in the given array and returns the index of the first match.

isArray() It tests if the passed value ia an array.

join() It joins the elements of an array as a string.

JavaScript Array Methods
Let's see the list of JavaScript array methods with their description.

https://www.javatpoint.com/javascript-array-concat-method
https://www.javatpoint.com/javascript-array-copywithin-method
https://www.javatpoint.com/javascript-array-entries-method
https://www.javatpoint.com/javascript-array-every-method
https://www.javatpoint.com/javascript-array-fill-method
https://www.javatpoint.com/javascript-array-from-method
https://www.javatpoint.com/javascript-array-find-method
https://www.javatpoint.com/javascript-array-findindex-method
https://www.javatpoint.com/javascript-array-foreach-method
https://www.javatpoint.com/javascript-array-includes-method
https://www.javatpoint.com/javascript-array-indexof-method
https://www.javatpoint.com/javascript-array-isarray-method
https://www.javatpoint.com/javascript-array-join-method

lastIndexOf() It searches the specified element in the given array and returns the index of the last match.

map() It calls the specified function for every array element and returns the new array

of() It creates a new array from a variable number of arguments, holding any type of argument.

pop() It removes and returns the last element of an array.

push() It adds one or more elements to the end of an array.

reverse() It reverses the elements of given array.

some() It determines if any element of the array passes the test of the implemented function.

shift() It removes and returns the first element of an array.

slice() It returns a new array containing the copy of the part of the given array.

sort() It returns the element of the given array in a sorted order.

splice() It add/remove elements to/from the given array.

toString() It converts the elements of a specified array into string form, without affecting the original array.

unshift() It adds one or more elements in the beginning of the given array.

values() It creates a new iterator object carrying values for each index in the array.

https://www.javatpoint.com/javascript-array-lastindexof-method
https://www.javatpoint.com/javascript-array-map-method
https://www.javatpoint.com/javascript-array-of-method
https://www.javatpoint.com/javascript-array-pop-method
https://www.javatpoint.com/javascript-array-push-method
https://www.javatpoint.com/javascript-array-reverse-method
https://www.javatpoint.com/javascript-array-some-method
https://www.javatpoint.com/javascript-array-shift-method
https://www.javatpoint.com/javascript-array-slice-method
https://www.javatpoint.com/javascript-array-sort-method
https://www.javatpoint.com/javascript-array-splice-method
https://www.javatpoint.com/javascript-array-tostring-method
https://www.javatpoint.com/javascript-array-unshift-method
https://www.javatpoint.com/javascript-array-values-method

JAVASCRIPT PROGRAMMING
CONSTRUCTS

Most of the programming languages have a common set of
programming constructs. JavaScript also provides a complete range
of basic programming constructs.

JavaScript Conditional Statements

As in any other programming language conditional statements in JavaScript are used to
perform different actions based on different conditions. While writing a code you may want
to perform different actions for different decisions. For this JavaScript has following
conditional statements:
1. If statement - use this statement if you want to execute some code only if a specified

condition is true.
Syntax
if (condition)
{
/* code to be executed if condition is true*/
}

Eg:
<script>
var a=20;
if(a>10){
document.write("value of a is greater than 10");
}
</script>
OUTPUT

value of a is greater than 10

2. if...else statement:- This statement is used if you want to execute some
code if the condition is true and any another code if the condition is false.
Syntax:
if (condition)
{
// code executed if condition is true
}
else
{
// code executed if condition is not true
}
Eg:

let a = [2,3,"hello"]

//OUTPUT prints false because 2 is not greater than 3

if (a[0] > a[1]) {

console.log("true")

}

else

{

console.log("false")

}

3. if...else if....else statement - use this statement if you want to select one of many blocks of code
to be executed.
Syntax:
if (condition1)
{
//code to be executed if condition1 is true
}
else if (condition2)
{
//code to be executed if condition2 is true
}
else
{
//code to be executed if condition 1 and 2 are not true
}

Eg:
<script>
var a=20;
if(a==10){
document.write("a is equal to 10");
}
else if(a==15){
document.write("a is equal to 15");
}
else if(a==20){
document.write("a is equal to 20"); //this will be the output
}
else{
document.write("a is not equal to 10, 15 or 20");
}
</script>

5. Switch statement – You can use Switch statement to select one of many blocks of
code that is to be executed. With the Switch statement you can select from a number
of alternatives.

Syntax:
switch(value)
{
Case 1:
//This code executed if first alternative is chosed
break;
Case 2;
//This code executed if second alternative is chosed
break;
default://used to take a default action
}

Note: You need to use break to come out of the Switch statement once selected case
code is executed

Eg:
<script>
var grade='B';
var result;
switch(grade){
case 'A':
result="A Grade";
break;
case 'B':
result="B Grade"; //this will be the output
break;
case 'C':
result="C Grade";
break;
default:
result="No Grade";
}
document.write(result);
</script>

JavaScript Loops

The JavaScript loops are used to iterate the piece of code using for,
while, do while or for-in loops. It makes the code compact. It is
mostly used in array.
There are four types of loops in JavaScript.
1.for loop
2.while loop
3.do-while loop
4.for-in loop

1) JavaScript For loop
The JavaScript for loop iterates the elements for the fixed number of times. It should be used
if number of iteration is known. The syntax of for loop is given below.
syntax
for (initialization; condition; increment)
{

code to be executed
}
Eg:
<script>
for (i=1; i<=5; i++)
{
document.write(i + "
")
}
</script>

OUTPUT
1
2
3
4
5

2) JavaScript while loop
The JavaScript while loop iterates the elements for the infinite number of times. It should be used
if number of iteration is not known. The syntax of while loop is given below.
syntax
while (condition)
{

code to be executed
}
Eg:
<script>
var i=11;
while (i<=15)
{
document.write(i + "
");
i++;
}
</script>
Output
11
12
13
14
15

3) JavaScript do while loop
The JavaScript do while loop iterates the elements for the infinite number of times like while loop.
But, code is executed at least once whether condition is true or false. The syntax of do while loop is
given below.
syntax
do{

code to be executed
}while (condition);
Eg:
<script>
var i=21;
do{
document.write(i + "
");
i++;
}while (i<=25);
</script>
OUTPUT
21
22
23
24
25

4) For-in loop
The syntax of the for...in loop is:
for (key in object) {

// body of for...in
}

In each iteration of the loop, a key is assigned to the key variable. The loop continues for all object
properties.
Eg1:
const student = { name: 'Monica', class: 7, age: 12 }

// using for...in

for (let key in student) {

// display the properties

console.log(`${key} => ${student[key]}`);
}

OUTPUT
name => Monica

class => 7
age => 12

In the above program, the for...in loop is used to iterate over the student object and print all its
properties.
•The object key is assigned to the variable key.
•student[key] is used to access the value of key.

Eg2:

const string = 'code’;

// using for...in loop

for (let i in string) {

console.log(string[i]);

}

OUTPUT

C

o

d
e

Eg3:

// define array

const arr = ['hello', 1, 'JavaScript'];

// using for...in loop

for (let x in arr) {

console.log(arr[x]);

}
OUTPUT

hello

1

JavaScript

JavaScript Dialogue Boxes

Dialogue boxes are a kind of popup notification, this kind of informative
functionality is used to show success, failure, or any particular/important
notification to the user.
JavaScript uses 3 kinds of dialog boxes:
•Alert
•Prompt
•Confirm
These dialog boxes can be of very much help in making our website
look more attractive.

Alert Box: An alert box is used on the website to show a warning message to the user
that they have entered the wrong value other than what is required to fill in that
position. Nonetheless, an alert box can still be used for friendlier messages. The alert
box gives only one button “OK” to select and proceed.
Eg:
<script type="text/javascript">

function Warning() {
alert ("Warning danger you have not filled everything");
console.log ("Warning danger you have not filled everything");

}
</script>
<p>Click the button to check the Alert Box functionality</p>
<form>

<input type="button" value="Click Me" onclick="Warning();" />
</form>

Confirm box: A confirm box is often used if you want the user to verify or accept something. When a
confirm box pops up, the user will have to click either “OK” or “Cancel” to proceed. If the user clicks
on the OK button, the window method confirm() will return true. If the user clicks on the Cancel
button, then confirm() returns false and will show null.
Example:
<script type="text/javascript">

function Confirmation() {
var Val = confirm("Do you want to continue ?");
if (Val == true) {

console.log(" CONTINUED!");
return true;

} else {
console.log("NOT CONTINUED!");
return false;

}
}

</script>
<p>Click the button to check the Confirm Box functionality</p>
<form>

<input type="button" value="Click Me" onclick="Confirmation();" />
</form>

https://www.geeksforgeeks.org/javascript-window-confirm-method/

Prompt Box: A prompt box is often used if you want the user to input a value before entering a page.
When a prompt box pops up, the user will have to click either “OK” or “Cancel” to proceed after entering
an input value. If the user clicks the OK button, the window method prompt() will return the entered
value from the text box. If the user clicks the Cancel button, the window method prompt() returns null.
Example:
<script type="text/javascript">

function Value(){
var Val = prompt("Enter your name : ", "Please enter your name");
console.log("You entered : " + Val);
}

</script>

<p>Click the button to check the Prompt Box functionality</p>
<form>

<input type="button" value="Click Me" onclick="Value();" />
</form>

https://www.geeksforgeeks.org/javascript-window-prompt-method/

JavaScript Functions

JavaScript functions also called methods are used to perform operations. We can
call JavaScript function many times to reuse the code.
Advantage of JavaScript function
There are mainly two advantages of JavaScript functions.
1.Code reusability: We can call a function several times so it save coding.
2.Less coding: It makes our program compact. We don’t need to write many lines of
code each time to perform a common task.
There are two types of functions:

1. Built-in functions
2. User defined functions

Built in function
A built-in function in JavaScript is a function that’s already available for use without needing any extra code.

These functions are a part of JavaScript itself and are designed to do common tasks like working with text, doing

math calculations, and handling lists of data.

String Functions:
•charAt(index): Returns the character at the specified index in a string.
•concat(str1, str2): Combines two or more strings and returns a new string.
•toUpperCase(): Converts a string to uppercase.
•toLowerCase(): Converts a string to lowercase.
•split(separator): Splits a string into an array of substrings based on a specified separator.
•indexOf(searchValue): Returns the index of the first occurrence of a substring.
•replace(searchValue, replaceValue): Replaces a substring with another substring.
•substring(start, end): Extracts a portion of a string.
•trim(): Removes whitespace from the beginning and end of a string.

Array Functions:
•push(element): Adds an element to the end of an array.
•pop(): Removes the last element from an array.
•shift(): Removes the first element from an array.
•unshift(element): Adds an element to the beginning of an array.
•concat(arr1, arr2): Combines two or more arrays and returns a new array.
•slice(start, end): Returns a shallow copy of a portion of an array.
•splice(start, deleteCount, element1, element2, ...): Changes the contents
of an array by removing, replacing, or adding elements.

Math Functions:
•Math.random(): Generates a random floating-point number between 0
and 1.
•Math.floor(num): Rounds a number down to the nearest integer.
•Math.ceil(num): Rounds a number up to the nearest integer.
•Math.round(num): Rounds a number to the nearest integer.

Date Functions:
•new Date(): Creates a new Date object representing the current date and time.
•getDate(), getMonth(), getYear(), getHours(), getMinutes(), getSeconds(): Get various
components of a date.
•setDate(), setMonth(), setYear(), setHours(), setMinutes(), setSeconds(): Set various
components of a date.

Regular Expression Functions:
•test(str): Tests if a regular expression pattern matches a string.
•exec(str): Searches for a match in a string and returns the matched text.

Global Functions:
•parseInt(str): Parses a string and returns an integer.
•parseFloat(str): Parses a string and returns a floating-point number.
•isNaN(value): Checks if a value is NaN (Not-a-Number).
•typeof(value): Returns a string that represents the type of a value.

USER DEFINED FUNCTIONS
The syntax of declaring function is given below.
SYNTAX:
function functionName(Parameter1, Parameter2, ...)

{
// Function body

}
To create a function in JavaScript, we have to first use the keyword function, separated by the name of
the function and parameters within parenthesis. The part of the function inside the curly braces {} is
the body of the function.
In javascript, functions can be used in the same way as variables for assignments, or calculations.
Function Definition: Before, using a user-defined function in JavaScript we have to create one. We
can use the above syntax to create a function in JavaScript. A function definition is sometimes also
termed a function declaration or function statement. Below are the rules for creating a function in
JavaScript:
•Every function should begin with the keyword function followed by,
•A user-defined function name that should be unique,
•A list of parameters enclosed within parentheses and separated by commas,
•A list of statements composing the body of the function enclosed within curly braces {}.

Eg1:

<script>
function msg(){
alert("hello! this is message");
}
</script>
<input type="button" onclick="msg()" value="call function"/>

JavaScript Function Arguments
We can call function by passing arguments. Let’s see the example of function that
has argument.

Eg2:

function calcAddition(number1, number2) {

 return number1 + number2;

}

console.log(calcAddition(6,9)); //OUTPUT WILL BE 15

Function with Return Value
We can call function that returns a value and use it in our
program. Let’s see the example of function that returns value.
Eg:
<script>
function getInfo(){
return "hello javatpoint! How r u?";
}
</script>
<script>
document.write(getInfo());
</script>

JavaScript Function Object
In JavaScript, the purpose of Function constructor is to create a new Function object. It executes the code
globally. However, if we call the constructor directly, a function is created dynamically but in an unsecured
way.
Syntax:

new Function ([arg1[, arg2[,argn]],] functionBody)

Eg:
<script>

var add=new Function("num1","num2","return num1+num2");
document.writeln(add(2,5)); //output will be 7
</script>

Scope of Variables in Javascript

Scope of variables refers to the accessibility of a particular variable within the program.
For example, assume you have two different functions. First, you declare a variable in function 1.
Then, you move on to the following function, i.e., function 2. Is it possible if you try to access the
variable made in function 1 from function 2? This refers to the Scope of a Variable in JavaScript.

	Default Section
	Slide 1: WEB DESIGNING
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

