
SOFTWARE ENGINEERING

UNIT 3

Software Design

Software design is a mechanism to transform user requirements

into some suitable form, which helps the programmer in

software coding and implementation. It deals with representing

the client's requirement, as described in SRS (Software

Requirement Specification) document, into a form, i.e., easily

implementable using programming language.

Objectives of Software Design

Following are the purposes of Software design:

1. Correctness: Software design should be correct as
per requirement.

2. Completeness: The design should have all
components like data structures, modules, and
external interfaces, etc.

3. Efficiency: Resources should be used efficiently by
the program.

4. Flexibility: Able to modify on changing needs.

5. Consistency: There should not be any inconsistency
in the design.

6. Maintainability: The design should be so simple so
that it can be easily maintainable by other designers.

Software Design Principles
Software design principles are concerned with providing means to

handle the complexity of the design process effectively. Effectively

managing the complexity will not only reduce the effort needed for

design but can also reduce the scope of introducing errors during

design.

Following are the principles of Software Design

Problem Partitioning

For small problem, we can handle the entire problem at once but for the

significant problem, divide the problems and conquer the problem it means to

divide the problem into smaller pieces so that each piece can be captured

separately.

For software design, the goal is to divide the problem into manageable pieces.

909.3K

99

Java Collection MCQ Set 1

Benefits of Problem Partitioning

1. Software is easy to understand

2. Software becomes simple

3. Software is easy to test

4. Software is easy to modify

5. Software is easy to maintain

6. Software is easy to expand

These pieces cannot be entirely independent of each

other as they together form the system. They have to

cooperate and communicate to solve the problem. This

communication adds complexity.

Abstraction
An abstraction is a tool that enables a designer to consider a component

at an abstract level without bothering about the internal details of the

implementation. Abstraction can be used for existing element as well as

the component being designed.

Here, there are two common abstraction mechanisms
1. Functional Abstraction

2. Data Abstraction

Functional Abstraction
i. A module is specified by the method it performs.

ii. The details of the algorithm to accomplish the functions are not visible to the user of the
function.

Functional abstraction forms the basis for Function oriented design approaches.
Data Abstraction

Details of the data elements are not visible to the users of data. Data Abstraction

forms the basis for Object Oriented design approaches.

Software Design Levels

Software design yields three levels of results:
•Architectural Design - The architectural design is the highest abstract
version of the system. It identifies the software as a system with many
components interacting with each other. At this level, the designers get
the idea of proposed solution domain.
•High-level Design- The high-level design breaks the ‘single entity-
multiple component’ concept of architectural design into less-abstracted
view of sub-systems and modules and depicts their interaction with each
other. High-level design focuses on how the system along with all of its
components can be implemented in forms of modules. It recognizes
modular structure of each sub-system and their relation and interaction
among each other.
•Detailed Design- Detailed design deals with the implementation part of
what is seen as a system and its sub-systems in the previous two
designs. It is more detailed towards modules and their implementations.
It defines logical structure of each module and their interfaces to
communicate with other modules.

Characteristics Good Design Bad Design

Change

Change in one part of the
system does not always require
a change in another part of the
system.

One conceptual change requires
changes to many parts of the
system.

Logic
Every piece of logic has one and
only one home.

Logic has to be duplicated.

Nature Simple Complex

Cost Small Very high

Link
The logic link can easily be
found.

The logic link cannot be
remembered.

Extension
System can be extended with
changes in only one place.

System cannot be extended so
easily.

Design concepts

•The set of fundamental software design concepts are as follows:

1. Abstraction: Abstraction is the act of representing essential features
without including the background details or explanations. the
abstraction is used to reduce complexity and allow efficient design and
implementation of complex software systems. Many levels of abstraction
can be posed. At the highest level of abstraction, a solution is stated in
broad terms using the language of the problem environment. At lower
levels of abstraction, a more detailed description of the solution is
provided. As different levels of abstraction are developed, you work to
create both procedural and data abstractions. A procedural abstraction
refers to a sequence of instructions that have a specific and limited
function. The name of a procedural abstraction implies these functions,
but specific details are suppressed. A data abstraction is a named
collection of data that describes a data object

2. Architecture: Software architecture alludes to “the overall structure of
the software and the ways in which that structure provides conceptual integrity
for a system” Architecture is the structure or organization of program
components (modules), the manner in which these components interact, and
the structure of data that are used by the components.
•Shaw and Garlan describe a set of properties that should be specified as part of
an architectural design:
➢ Structural properties
➢ Extra-functional properties.
➢ Families of related systems.
•The aim of the software design is to obtain an architectural framework of a
system.
•The more detailed design activities are conducted from the framework.

3.Patterns

A design pattern describes a design structure and that structure
solves a particular design problem in a specified content.

•The intent of each design pattern is to provide a description that enables a
designer to determine
(1) whether the pattern is applicable to the current work,
(2) whether the pattern can be reused (hence, saving design time), and
(3) whether the pattern can serve as a guide for developing a similar, but
functionally or structurally different pattern.

4. Separation of Concerns
• Separation of concerns is a design concept that suggests that any complex
problem can be more easily handled if it is subdivided into pieces that can
each be solved and/or optimized independently. A concern is a feature or
behavior that is specified as part of the requirements model for the software.
Separation of concerns is manifested in other related design concepts:
modularity, aspects, functional independence, and refinement.

5. Modularity

•A software is separately divided into name and addressable
components. Sometime they are called as modules which
integrate to satisfy the problem requirements.
•Modularity is the single attribute of a software that permits a
program to be managed easily.

•Modularity is the most common manifestation of separation of
concerns. Software is divided into separately named and
addressable components, sometimes called module.

6. Information hiding

Information Hiding The principle of information hiding suggests that
modules be “characterized by design decisions that hides from all
others.” In other words, modules should be specified and designed so
that information contained within a module is inaccessible to other
modules that have no need for such information.The use of
information hiding as a design criterion for modular systems provides
the greatest benefits when modifications are required during testing
and later during software maintenance. Because most data and
procedural detail are hidden from other parts of the software,
inadvertent errors introduced during modification are less likely to
propagate to other locations within the software.

7. Functional independence

The functional independence is the concept of separation and
related to the concept of modularity, abstraction and
information hiding.
•The functional independence is accessed using two criteria i.e
Cohesion and coupling.
Cohesion:
Cohesion is an extension of the information hiding concept.
•A cohesive module performs a single task and it requires a
small interaction with the other components in other parts of
the program.
Coupling

Coupling is an indication of interconnection between modules in
a structure of software.

8.Refinement
•Refinement is a top-down design approach.
•It is a process of elaboration.
•A program is established for refining levels of procedural
details.
•A hierarchy is established by decomposing a statement
of function in a stepwise manner till the programming
language statement are reached.

Abstraction enables you to specify procedure and data
internally but suppress the need for “outsiders” to have
knowledge of low-level details. Refinement helps you to reveal
low-level details as design progresses.

9. Refactoring:

• It is a reorganization technique which simplifies the design
of components without changing its function behaviour.

• Refactoring is the process of changing the software system
in a way that it does not change the external behaviour of
the code still improves its internal structure.
•: “Refactoring is the process of changing a software system in such a way
that it does not alter the external behavior of the code [design] yet improves
its internal structure.”

DESIGN APPROACHES

1.Top-Down Design: This strategy starts with a high-level view of the system and gradually breaks
it down into smaller, more manageable components.
2.Bottom-Up Design: This strategy starts with individual components and builds the system up,
piece by piece.

Top-down design is more suitable when the software solution needs to be designed from scratch
and specific details are unknown.
Bottom-up approach is more suitable when a system needs to be created from some existing
system, where the basic primitives can be used in the newer system.
Both top-down and bottom-up approaches are not practical individually .Instead a good combination
of both is used.

Software Design Strategies

1.Structured Design

Structured design is mostly based on ‘divide and conquer’ strategy where a problem is broken into
several small problems and each small problem is individually solved until the whole problem is
solved.
The small pieces of problem are solved by means of solution modules. Structured design emphasis
that these modules be well organized in order to achieve precise solution.
These modules are arranged in hierarchy. They communicate with each other. A good structured
design always follows some rules for communication among multiple modules, namely -
Cohesion - grouping of all functionally related elements.
Coupling - communication between different modules.
A good structured design has high cohesion and low coupling arrangements.

2.Function oriented design

Function oriented design inherits some properties of structured design where divide
and conquer methodology is used.
This design mechanism divides the whole system into smaller functions, which
provides means of abstraction by concealing the information and their operation..
These functional modules can share information among themselves by means of
information passing and using information available globally.
Another characteristic of functions is that when a program calls a function, the
function changes the state of the program, which sometimes is not acceptable by
other modules. Function oriented design works well where the system state does
not matter and program/functions work on input rather than on a state.

Design Process
•The whole system is seen as how data flows in the system by means of data flow
diagram.
•DFD depicts how functions changes data and state of entire system.
•The entire system is logically broken down into smaller units known as functions on
the basis of their operation in the system.
•Each function is then described at large.

3. Object Oriented Design
Object oriented design works around the entities and their characteristics instead of functions
involved in the software system. This design strategies focuses on entities and its
characteristics. The whole concept of software solution revolves around the engaged entities.

OBJECT ORIENTED DESIGN CONCEPTS

•Objects: Objects are all the entities involved in the solution design. Persons, banks, companies, and users are
all examples of objects. Every object has some properties associated with it, along with some methods for
performing operations on those attributes.
•Class: Classes are generic descriptions of objects. An object is a class instance. A class defines all the
properties an object can have and the methods that represent the object's functionality.
•Abstraction: Abstraction is used in object-oriented design to deal with complexity. Abstraction is the removal
of the unnecessary and the amplification of the necessary.
•Encapsulation: It is also known as information concealing. The processes and data are tied to a single unit.
Encapsulation not only groups together an object's vital information but also restricts access to the data and
operations from the outside world.
•Inheritance: OOD allows similar classes to be stacked hierarchically, with lower or sub-classes being able to
import, implement, and reuse variables and functions from their immediate superclasses. This OOD
characteristic is known as inheritance. This facilitates the definition of specialized classes as well as the
creation of generic classes.
•Polymorphism: OOD languages give a technique for assigning the same name to methods that perform
similar functions but differ in arguments. This is referred to as polymorphism, and it allows a single interface to
perform functions for multiple types. The relevant piece of the code is run depending on how the service is
invoked.

Design classes

•The model of software is defined as a set of design
classes.
•Every class describes the elements of problem domain
and that focus on features of the problem which are
user visible.

•Five different types of design classes, each representing a
different layer of the design architecture, can be
developed:

Design classes

• User interface classes define all abstractions that are necessary for
human computer interaction (HCI). The design classes for the interface
may be visual representations of the elements of the metaphor.
• Business domain classes are often refinements of the analysis classes
defined earlier. The classes identify the attributes and services (methods)
that are required to implement some element of the business domain.
• Process classes implement lower-level business abstractions required
to fully manage the business domain classes.
• Persistent classes represent data stores (e.g., a database) that will
persist beyond the execution of the software.
• System classes implement software management and control functions
that enable the system to operate and communicate within its computing
environment and with the outside world.

four characteristics of a well-formed design class:
Complete and sufficient. A design class should be the complete

encapsulation of all attributes and methods that can reasonably be expected
to exist for the class. Sufficiency ensures that the design class contains only
those methods that are sufficient to achieve the intent of the class, no more
and no less.

Primitiveness. Methods associated with a design class should be focused
on accomplishing one service for the class. Once the service has been
implemented with a method, the class should not provide another way to
accomplish the same thing.

High cohesion. A cohesive design class has a small, focused set of
responsibilities and single-mindedly applies attributes and methods to
implement those responsibilities.

Low coupling. Within the design model, it is necessary for design classes
to collaborate with one another. If a design model is highly coupled, the
system is difficult to implement, to test, and to maintain over time.

Coupling and Cohesion

Module Coupling
In software engineering, the coupling is the degree of interdependence between
software modules. Two modules that are tightly coupled are strongly dependent on
each other. However, two modules that are loosely coupled are not dependent on
each other. Uncoupled modules have no interdependence at all within them.
The various types of coupling techniques are shown in fig:

TYPES OF MODULES COUPLING:

No Direct Coupling: There is no direct coupling between M1 and M2.
Content Coupling: Content Coupling exists among two modules if they share
code, e.g., a branch from one module into another module.
Common Coupling: Two modules are common coupled if they share information
through some global data items.
Control Coupling: Control Coupling exists among two modules if data from one
module is used to direct the structure of instruction execution in another.
Stamp Coupling: Two modules are stamp coupled if they communicate using
composite data items such as structure, objects, etc. When the module passes
non-global data structure or entire structure to another module, they are said to
be stamp coupled. For example, passing structure variable in C or object in C++
language to a module.
Data Coupling: When data of one module is passed to another module, this is
called data coupling.
Ideally no coupling is considered to be best.

Cohesion

In computer programming, cohesion defines to the degree to which the elements of a
module belong together. Thus, cohesion measures the strength of relationships
between pieces of functionality within a given module. For example, in highly
cohesive systems, functionality is strongly related.
Cohesion is an ordinal type of measurement and is generally described as "high
cohesion" or "low cohesion."

Types of Modules Cohesion:

Coincidental Cohesion: A module is said to have coincidental cohesion if it performs a set of tasks that are associated
with each other very loosely, if at all.
Logical Cohesion: A module is said to be logically cohesive if all the elements of the module perform a similar
operation. For example Error handling, data input and data output, etc.
Temporal Cohesion: When a module includes functions that are associated by the fact that all the methods must be
executed in the same time, the module is said to exhibit temporal cohesion.
Procedural Cohesion: A module is said to be procedural cohesion if the set of purpose of the module are all parts of a
procedure in which particular sequence of steps has to be carried out for achieving a goal, e.g., the algorithm for
decoding a message.
Communicational Cohesion: A module is said to have communicational cohesion, if all tasks of the module refer to or
update the same data structure, e.g., the set of functions defined on an array or a stack.
Sequential Cohesion: A module is said to possess sequential cohesion if the element of a module form the
components of the sequence, where the output from one component of the sequence is input to the next.
Functional Cohesion: Functional Cohesion is said to exist if the different elements of a module, cooperate to achieve a
single function.

DESIGN MODEL

The design principles and concepts establish a foundation for the
creation of the design model that encompasses representation of data,
architecture, interface and components. Like the analysis model before
it, each of these design representations is tied to the others, and all
can be traced back to software requirements.

The entity-relationship diagrams(ERD),data flow diagrams(DFD),the
state transition diagram(STD) and the data dictionaries(DD) that are
constructed during the requirements phase are directly mapped on to
the corresponding design model as below.

•Data design: It represents the data objects and their interrelationship in an
entity-relationship diagram. Entity-relationship consists of information
required for each entity or data objects as well as it shows the relationship
between these objects. It shows the structure of the data in terms of the
tables. It shows three type of relationship – One to one, one to many, and
many to many. In one to one relation, one entity is connected to another entity.
In one many relation, one Entity is connected to more than one entity. un many
to many relations one entity is connected to more than one entity as well as
other entity also connected with first entity using more than one entity.
•Architectural design: It defines the relationship between major structural
elements of the software. It is about decomposing the system into interacting
components. It is expressed as a block diagram defining an overview of the
system structure – features of the components and how these components
communicate with each other to share data. It defines the structure and
properties of the component that are involved in the system and also the
inter-relationship among these components.

•User Interfaces design: It represents how the Software communicates with
the user i.e. the behavior of the system. It refers to the product where user
interact with controls or displays of the product. For example, Military,
vehicles, aircraft, audio equipment, computer peripherals are the areas where
user interface design is implemented. UI design becomes efficient only after
performing usability testing. This is done to test what works and what does
not work as expected. Only after making the repair, the product is said to
have an optimized interface.

•Component level design: It transforms the structural elements of the
software architecture into a procedural description of software components. It
is a perfect way to share a large amount of data. Components need not be
concerned with how data is managed at a centralized level i.e. components
need not worry about issues like backup and security of the data.

UML

Unified Modeling Language (UML)

is a general purpose modelling language. The main aim of UML is to
define a standard way to visualize the way a system has been
designed. It is quite similar to blueprints used in other fields of
engineering. UML is not a programming language , it is rather a
visual language. We use UML diagrams to portray the behavior and
structure of a system.
UML helps software engineers, businessmen and system architects
with modelling, design and analysis. The Object Management Group
(OMG) adopted Unified Modelling Language as a standard in 1997. Its
been managed by OMG ever since. International Organization for
Standardization (ISO) published UML as an approved standard in
2005. UML has been revised over the years and is reviewed
periodically.

Do we really need UML?

•Complex applications need collaboration and planning from multiple
teams and hence require a clear and concise way to communicate
amongst them.
•Businessmen do not understand code. So UML becomes essential to
communicate with non programmers essential requirements,
functionalities and processes of the system.
•A lot of time is saved down the line when teams are able to visualize
processes, user interactions and static structure of the system.

UML is linked with object oriented design and analysis. UML makes the
use of elements and forms associations between them to form diagrams.
Diagrams in UML can be broadly classified as:

1.Structural Diagrams – Capture static aspects or structure of a system.
Structural Diagrams include: Component Diagrams, Object Diagrams,
Class Diagrams and Deployment Diagrams.
2.Behavior Diagrams – Capture dynamic aspects or behavior of the
system. Behavior diagrams include: Use Case Diagrams, State Diagrams,
Activity Diagrams and Interaction Diagrams.

1.USE CASE DIAGRAM

A use case diagram is used to represent the dynamic behavior of a system. It
encapsulates the system's functionality by incorporating use cases, actors, and their
relationships. It models the tasks, services, and functions required by a
system/subsystem of an application. It depicts the high-level functionality of a system
and also tells how the user handles a system.

In the Unified Modeling Language (UML), a use case diagram can summarize the
details of your system's users (also known as actors) and their interactions with the
system. To build one, you'll use a set of specialized symbols and connectors. An
effective use case diagram can help your team discuss and represent:
•Scenarios in which your system or application interacts with people, organizations, or
external systems
•Goals that your system or application helps those entities (known as actors) achieve
•The scope of your system

A use case diagram doesn't go into a lot of detail—for example, don't expect it to
model the order in which steps are performed. Instead, a proper use case diagram
depicts a high-level overview of the relationship between use cases, actors, and
systems. Experts recommend that use case diagrams be used to supplement a more
descriptive textual use case.
• Use cases are represented with a labeled oval shape. Stick figures represent

actors in the process, and the actor's participation in the system is modeled with
a line between the actor and use case. To depict the system boundary, draw a box
around the use case itself.

UML use case diagrams are ideal for:
•Representing the goals of system-user interactions
•Defining and organizing functional requirements in a system
•Specifying the context and requirements of a system
•Modeling the basic flow of events in a use case

Use case diagram components
•Actors: The users that interact with a system. An actor can be a person, an organization,
or an outside system that interacts with your application or system. They must be
external objects that produce or consume data.
•System: A specific sequence of actions and interactions between actors and the system.
A system may also be referred to as a scenario.
•Goals: The end result of most use cases. A successful diagram should describe the
activities and variants used to reach the goal.
Use case diagram symbols and notation
•Use cases: Horizontally shaped ovals that represent the different uses that a user might
have.
•Actors: Stick figures that represent the people actually employing the use cases.
•Associations: A line between actors and use cases. In complex diagrams, it is important
to know which actors are associated with which use cases.
•System boundary boxes: A box that sets a system scope to use cases. All use cases
outside the box would be considered outside the scope of that system.

•Include Use Case - The include use case never stand alone. When an actor initiates any base use case then
base use case executes included use case.
•Extend Use Case - The base use case may stand alone, but under certain conditions, its behavior may be
extended by behavior of another use case.

2.Class Diagram

The class diagram depicts a static view of an application. It represents the types
of objects residing in the system and the relationships between them. A class
consists of its objects, and also it may inherit from other classes. A class diagram
is used to visualize, describe, document various different aspects of the system,
and also construct executable software code.
It shows the attributes, classes, functions, and relationships to give an overview
of the software system. It constitutes class names, attributes, and functions in a
separate compartment that helps in software development. Since it is a
collection of classes, interfaces, associations, collaborations, and constraints, it is
termed as a structural diagram.

The UML Class diagram is a graphical notation used to construct and
visualize object oriented systems. A class diagram in the Unified
Modeling Language (UML) is a type of static structure diagram that
describes the structure of a system by showing the system's:
•classes,
•their attributes,
•operations (or methods),
•and the relationships among objects.

https://en.wikipedia.org/wiki/Unified_Modeling_Language

Purpose of Class Diagrams
1.It analyses and designs a static view of an application.
2.It describes the major responsibilities of a system.
3.It is a base for component and deployment diagrams.
4.It incorporates forward and reverse engineering.

Benefits of Class Diagrams
1.It can represent the object model for complex systems.
2.It reduces the maintenance time by providing an overview of how an application
is structured before coding.
3.It provides a general schematic of an application for better understanding.
4.It represents a detailed chart by highlighting the desired code, which is to be
programmed.
5.It is helpful for the stakeholders and the developers.

Basic components of a class diagram

The standard class diagram is composed of three sections:
•Upper section: Contains the name of the class. This section is always required,
whether you are talking about the classifier or an object.
•Middle section: Contains the attributes of the class. Use this section to describe the
qualities of the class. This is only required when describing a specific instance of a
class.
•Bottom section: Includes class operations (methods). Displayed in list format, each
operation takes up its own line. The operations describe how a class interacts with
data.

• Each class is represented by a rectangle having a
subdivision of three compartments class name,
attributes, and methods(operations).
• There are three types of modifiers that are used to
decide the visibility of attributes and operations.

• + is used for public visibility(for everyone)
• # is used for protected visibility (for friend and

derived)
• – is used for private visibility (for only me)

What is a Class?

A Class is a blueprint for an object. Objects and classes go hand in hand. We can't talk
about one without talking about the other. And the entire point of Object-Oriented
Design is not about objects, it's about classes, because we use classes to create objects.
So a class describes what an object will be, but it isn't the object itself.
In fact, classes describe the type of objects, while objects are usable instances of classes.
Example:
A dog has states - color, name, breed as well as behaviors -wagging, barking, eating. An
object is an instance of a class.

Relationships

In UML, relationships are of three types:

1.Dependency: A dependency is a semantic relationship between two or more
classes where a change in one class cause changes in another class.It forms a
weaker relationship.
In the following example, Student_Name is dependent on the Student_Id.

2.Generalization: A generalization is a relationship between a parent
class (superclass) and a child class (subclass). In this, the child class is
inherited from the parent class.
For example, The Current Account, Saving Account, and Credit Account
are the generalized form of Bank Account.

3.Association: It describes a static or physical connection between two or more
objects. It depicts how many objects are there in the relationship.
For example, a department is associated with the college.

Aggregation: An aggregation is a subset of association, which
represents has a relationship. It is more specific then
association. It defines a part-whole or part-of relationship. In
this kind of relationship, the child class can exist independently
of its parent class.
The company encompasses a number of employees, and even
if one employee resigns, the company still exists.

Composition: The composition is a subset of aggregation. It
portrays the dependency between the parent and its child,
which means if one part is deleted, then the other part also
gets discarded. It represents a whole-part relationship.
A contact book consists of multiple contacts, and if you delete
the contact book, all the contacts will be lost.

Multiplicity: It defines a specific range of allowable instances of
attributes. In case if a range is not specified, one is considered
as a default multiplicity.
For example, multiple patients are admitted to one hospital.

3.INTERACTION DIAGRAM

As its name might suggest, an interaction diagram is a type of UML diagram that's used to
capture the interactive behavior of a system. Interaction diagrams focus on describing the flow of
messages within a system, providing context for one or more lifelines within a system. In
addition, interaction diagrams can be used to represent the ordered sequences within a system
and act as a means of visualizing real-time data via UML.
The interaction diagram helps to envision the interactive (dynamic) behavior of any system. It
portrays how objects residing in the system communicates and connects to each other. It also
provides us with a context of communication between the lifelines inside the system.

Following are the purpose of an interaction diagram given below:
1.To visualize the dynamic behavior of the system.
2.To envision the interaction and the message flow in the system.
3.To portray the structural aspects of the entities within the system.
4.To represent the order of the sequenced interaction in the system.
5.To visualize the real-time data and represent the architecture of an object-oriented system.

Types of interaction diagrams in UML
Interaction diagrams are divided into four main types of diagrams:
•Communication diagram
•Sequence diagram
•Timing diagram
•Interaction overview diagram
Each type of diagram focuses on a different aspect of a system’s behavior or
structure.

3.1 Communication diagram (or collaboration diagram)

In UML, communication diagrams depict the relationships and interactions among
various software objects. They emphasize the structural aspects of an interaction
diagram, focusing on object architecture rather than the flow of messages.

A communication diagram provides the following benefits:
•They emphasize how lifelines connect.
•They focus on elements within a system rather than message flow.
•They provide an added emphasis on organization over timing.
Communication diagrams can also have these possible downsides:
•They can become very complex.
•They make it difficult to explore specific objects within a system.
•They can be time-consuming to create.

https://www.lucidchart.com/pages/uml-communication-diagram

3.2 Sequence diagram

Another option for depicting interactions is using sequence diagrams. These diagrams revolve
around five main events:
•Order placement
•Payment
•Order confirmation
•Order preparation
•Order deliver

If the sequence of events changes, it can cause delays, or the system may crash. It’s important
to select the notation that matches the particular sequence within your diagram.
A sequence diagram provides the following benefits:
•They’re easy to maintain and generate.
•They’re easy to update according to changes in a system.
•They allow for reverse and forward engineering.
Sequence diagrams can also have these possible downsides:
•They can become complex, with too many lifelines and varied notations.
•They’re easy to produce incorrectly and depend on your sequence being entered correctly.

https://www.lucidchart.com/pages/uml-sequence-diagram

3.3 Timing diagram

Another diagram option can be to use timing diagrams. These are visuals used to depict
the state of a lifeline at any instance in time, denoting the changes in an object from one
form to another. Waveforms are used within timing diagrams to visualize the flow within
the software program at various instances of time.
A timing diagram offers the following benefits:
•They allow for forward and reverse engineering.
•They can represent the state of an object at an exact instance in time.
•They can keep track of any and all changes within a system.
You should also consider these potential downsides of using a timing diagram:
•They can be difficult to understand.
•They can be hard to maintain over time.

https://www.lucidchart.com/pages/uml-timing-diagram

Boat manufacturing timing diagram example
In this simplified example of a boat manufacturing plant, a timing diagram shows that too much
time is spent on the upholstery stages of production. As a result, factory administrators may
assign more employees to the upholstery stations or seek out ways to increase efficiency. If
administrators can effectively use a timing diagram to increase efficiency, the process can be
significantly improved, decreasing both time and money spent on the process.

3.4 Interaction Overview Diagram

An Interaction Overview Diagram is a high-level diagram used to show the flow of
interactions between different parts of a system or between various systems or
components.
•It provides an overview of how various interactions, typically represented by
sequence diagrams or communication diagrams, are organized and connected.
•Interaction overview diagrams are often used to show the overall structure of
interactions in complex scenarios, making them easier to understand.
•They can include elements like decision nodes, merge nodes, and interaction
fragments to represent conditional flows and loops within the interactions.
•Interaction overview diagrams are especially useful when you want to present a
simplified view of complex interactions.
•Interaction overview diagrams focus on the overview of the flow of
control where the nodes are interactions (sd) or interaction use (ref).

Interaction(sd)
An Interaction diagram of any kind may appear inline as an
Activity Invocation.
Interaction Use(ref)
Large and complex sequence diagrams could be simplified
with interaction uses. It is also common to reuse some
interaction between several other interactions.

4. State Machine Diagram

The state machine diagram is also called the Statechart or State Transition diagram,
which shows the order of states underwent by an object within the system. It
captures the software system's behavior. It models the behavior of a class, a
subsystem, a package, and a complete system.
Statechart diagram describes the flow of control from one state to another state.
States are defined as a condition in which an object exists and it changes when some
event is triggered. The most important purpose of Statechart diagram is to model
lifetime of an object from creation to termination.

Following are the main purposes of using Statechart diagrams −
•To model the dynamic aspect of a system.
•To model the life time of a reactive system.
•To describe different states of an object during its life time.
•Define a state machine to model the states of an object.

How to Draw a State-chart Diagram?

•Identify the important objects to be analyzed.
•Identify the states.
•Identify the events.

Notation of a State Machine Diagram
Following are the notations of a state machine diagram enlisted below:

1.Initial state: It defines the initial state (beginning) of a system, and it is represented by a black filled circle.
2.Final state: It represents the final state (end) of a system. It is denoted by a filled circle present within a circle.
3.Decision box: It is of diamond shape that represents the decisions to be made on the basis of an evaluated
guard.
4.Transition: A change of control from one state to another due to the occurrence of some event is termed as a
transition. It is represented by an arrow labeled with an event due to which the change has ensued.
5.State box: It depicts the conditions or circumstances of a particular object of a class at a specific point of time.
A rectangle with round corners is used to represent the state box.

Calendar availability state diagram example

This state machine diagram example shows the process by
which a person sets an appointment on their calendar. In the
“Check date” composite state, the system checks the calendar
for availability in a few different substates. If the time is not
available on the calendar, the process will be escaped. If the
calendar shows availability, however, the appointment will be
added to the calendar.

5. ACTIVITY DIAGRAM

ACTIVITY DIAGRAM is basically a flowchart to represent the flow from one activity to
another activity. The activity can be described as an operation of the system. The basic
purpose of activity diagrams is to capture the dynamic behavior of the system.. It is also
called object-oriented flowchart.

The purpose of an activity diagram can be described as −
•Draw the activity flow of a system.
•Describe the sequence from one activity to another.
•Describe the parallel, branched and concurrent flow of the system.

Notation of an Activity diagram

Activity diagram constitutes following notations:
Initial State: It depicts the initial stage or beginning of the set of actions.
Final State: It is the stage where all the control flows and object flows end.
Decision Box: It makes sure that the control flow or object flow will follow only one path.
Action Box: It represents the set of actions that are to be performed.

Components of an Activity Diagram

Activities
The categorization of behavior into one or more actions is termed as an activity. In other
words, it can be said that an activity is a network of nodes that are connected by edges. The
edges depict the flow of execution. It may contain action nodes, control nodes, or object
nodes.
The control flow of activity is represented by control nodes and object nodes that illustrates
the objects used within an activity. The activities are initiated at the initial node and are
terminated at the final node.

Activity partition /swimlane
The swimlane is used to cluster all the related activities in one column or one row. It can be
either vertical or horizontal. It used to add modularity to the activity diagram. It is not
necessary to incorporate swimlane in the activity diagram. But it is used to add more
transparency to the activity diagram.

Forks
Forks and join nodes generate the concurrent flow inside the
activity. A fork node consists of one inward edge and several
outward edges. It is the same as that of various decision
parameters. Whenever a data is received at an inward edge, it
gets copied and split crossways various outward edges. It split a
single inward flow into multiple parallel flows.

Join Nodes
Join nodes are the opposite of fork nodes. A Logical AND
operation is performed on all of the inward edges as it
synchronizes the flow of input across one single output
(outward) edge.

Note symbol
Allows the diagram creators or collaborators to communicate
additional messages that don't fit within the diagram itself.
Leave notes for added clarity and specification.

Send signal symbol
Indicates that a signal is being sent to a receiving activity.

Receive signal symbol
Demonstrates the acceptance of an event. After the event is
received, the flow that comes from this action is completed

Activity diagram for a login page

Example of an Activity Diagram

An example of an activity diagram showing the business flow activity of order processing is given below.
Here the input parameter is the Requested order, and once the order is accepted, all of the required
information is then filled, payment is also accepted, and then the order is shipped. It permits order
shipment before an invoice is sent or payment is completed.

6. Package diagrams

Package diagrams are structural diagram which is commonly used to simplify

complex class diagrams and organize classes into packages. A package is a

collection of related UML elements including diagrams, documents, classes, and

event packages. Aside from that, the package diagram offers valuable high-level

visibility for large projects and systems.
A package in the Unified Modeling Language helps:
1.To group elements
2.To provide a namespace for the grouped elements
3.A package may contain other packages, thus providing for a hierarchical
organization of packages.
4.UML elements can be grouped into packages.

Benefits of a package diagram

A well-designed package diagram provides numerous benefits to those
looking to create a visualization of their UML system or project.
•They provide a clear view of the hierarchical structure of the various UML
elements within a given system.
•These diagrams can simplify complex class diagrams into well-ordered
visuals.
•They offer valuable high-level visibility into large-scale projects and systems.
•Package diagrams can be used to visually clarify a wide variety of projects
and systems.
•These visuals can be easily updated assystems and projects evolve.

Basic components of a package diagram

Package
Groups common elements based
on data, behavior, or user
interaction

Dependency

Depicts the relationship between
one element (package, named
element, etc) and
another. Dependencies are
divided into two groups: access
and import dependencies.

<<import>> - one package imports the functionality of
other package
<<access>> - one package requires help from functions
of other package

EXAMPLE

The following example shows the Track Order Service for an online shopping store.
Track Order Service is responsible for providing tracking information for the products
ordered by customers. Customer types in the tracking serial number, Track Order
Service refers the system and updates the current shipping status to the customer.

Step 1 - Identify the packages present in the system
1.There is a "track order" service, it has to talk with other module to know about the
order details, let us call it "Order Processing".
2.Next after fetching Order Details it has to know about shipping details, let us call
that as "Shipping".
3.Finally if knows the status of the order it has to update the information to the user,
let us call this module as "UI Framework".

Step 2 - Identify the dependencies

1."Track order" package should get order details from "Order
Processing" and on the other hand, "Order Processing" also
requires the tracking information from the "Track Order"
package, thus, the two modules are accessing each other which
suffices <<access>> dual dependency.

2.To know shipping information, "Shipping" requires to
import "Track Order" to complete the shipping process.

Step 3 - Finally, Track Order dependency to UI Framework is also
mapped in to the diagram which completes the Package Diagram for
Track Order subsystem.

7. Component diagram

Component diagram is a special kind of diagram in UML. The purpose is
also different from all other diagrams discussed so far. It does not describe
the functionality of the system but it describes the components used to
make those functionalities.
Thus from that point of view, component diagrams are used to visualize the
physical components in a system. These components are libraries,
packages, files, etc.
Component diagrams can also be described as a static implementation
view of a system.
The purpose of the component diagram can be summarized as −
•To represent the components of any system at runtime.
•It helps during testing of a system.
•It visualizes the connection between various components.

Following are some artifacts that are needed to be identified before
drawing a component diagram:
•Files used in the system.
•Libraries and other artifacts relevant to the application.
•Relationships among the artifacts.

Notation of a Component Diagram

a) A component

b) A node

Provided interfaces:

Required interfaces:

8. Deployment Diagram

The deployment diagram visualizes the physical hardware on which the software will be
deployed. It portrays the static deployment view of a system. It involves the nodes and
their relationships.
It ascertains how software is deployed on the hardware. It maps the software architecture
created in design to the physical system architecture, where the software will be executed
as a node. Since it involves many nodes, the relationship is shown by utilizing
communication paths.

Both the deployment diagram and the component diagram are closely interrelated to each
other as they focus on software and hardware components. The component diagram
represents the components of a system, whereas the deployment diagram describes how
they are actually deployed on the hardware.

Following are the purposes of deployment diagram enlisted below:
1.To envision the hardware topology of the system.
2.To represent the hardware components on which the software components are installed.
3.To describe the processing of nodes at the runtime.

Symbol and notation of Deployment diagram
The deployment diagram consist of the following notations:
1.A component
2.An artifact
3.An interface
4.A node

NOTE: A node, represented as a cube, is a physical entity that
executes one or more components, subsystems or executables. A
node could be a hardware or software element.
Artifacts are concrete elements that are caused by a development
process. Examples of artifacts are libraries, archives, configuration
files, executable files etc.

A deployment diagram plays a critical role during the
administrative process, and it must satisfy the following
parameters,
•High performance
•Maintainability
•Scalability
•Portability
•Easily understandable

Deployment diagrams can be used −
•To model the hardware topology of a system.
•To model the embedded system.
•To model the hardware details for a client/server system.
•To model the hardware details of a distributed application.
•For Forward and Reverse engineering.

Following is a sample deployment diagram to provide an idea of the deployment view of order
management system. Here, we have shown nodes as −
•Monitor
•Modem
•Caching server
•Server
The application is assumed to be a web-based application, which is deployed in a clustered environment
using server 1, server 2, and server 3. The user connects to the application using the Internet. The control
flows from the caching server to the clustered environment.

	Slide 1: SOFTWARE ENGINEERING
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

