

MODULE V
PHP & POSTGRESQL:

PostgreSQL is a powerful, enterprise-class open source object-relational
database management system. PostgreSQL supports advanced data types and
advance performance optimization, features only available in the expensive
commercial database, like Oracle and SQL Server.

It has more than 15 years of active development and a proven

architecture that has earned it a strong reputation for reliability, data integrity,

and correctness. PostgreSQL runs on all major operating systems, including
Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac OS X, Solaris, Tru64), and
Windows. This tutorial will give us quick start with PostgreSQL and make us
comfortable with PostgreSQL programming.

PostgreSQL is known for its reliability, data integrity and correctness. It

is compatible with all major operating systems like Linux, UNIX and Windows. It
is based on POSTGRES 4.2 and is developed at Berkeley Computer Science
Department, University of California. It is an advanced RDBMS which is capable
of more than retrieving and updating data. PostgreSQL is fully ACID compliant.
It supports foreign keys, joins, triggers, views and stored procedures. It includes
SQL: 2008 data types like NUMERIC, CHAR, INTERVAL and INTEGAR, etc. The

database helps store binary large objects including audio, video and images. It
features a native programming interface for C/C++, .Net, Java, Perl, Ruby,
Python, etc. Its other sophisticated features include Multi-Version Concurrency
Control (MVCC), table spaces, point in time recovery, nested transactions,
asynchronous replication, a sophisticated query planner, etc. It also supports
multi-byte character coding, Unicode and international character sets. It is

highly scalable in both quantity of data to be managed and the number of
concurrent users to be accommodated.

PostgreSQL needs minimum efforts as it is quite stable. So, if we

develop PostgreSQL-based applications then the total cost of ownership will be
low as compared to other database management systems. It is a free database.

Its source code is under the license of PostgreSQL. We can modify and distribute
PostgreSQL in any form.

Advantages of PostgreSQL

 Open Source DBMS: Among current Open Source DBMS only the
PostgreSQL provides unlimited development possibilities. It also enables

users to join communities to post or share bugs and difficulties. o Freedom
of use and modify: *We can run PostgreSQL for any use. It can be
connected to multiple servers, cores and users. We are also free to modify it
to fulfill our needs. o *Unlimited copying and distribution: PostgreSQL
allows unlimited copying and distribution.

 ACID and Transaction: PostgreSQL support Atomicity, Consistency,

Isolation and Durability (ACID). o Multiple indexing techniques: Apart from

the B+ tree index techniques, it also provides various other techniques like
GIN (Generalized Inverted Index) and GST (Generalized Search Tree), etc.

 Full-text search: It offers full-text search when searching for strings.

 Diverse replication methods: It supports a variety of replication methods
like cascading, Slony-I and Streaming replication. o Diverse extension
functions: It is compatible with different techniques which are used to store
geographic data such as Key-Value Store, PostGIS and DBLink. o Cost-
effective: It is designed to have lower maintenance. o Cross-platform: It is
compatible with almost all brands of Unix and with Windows via the
Cygwin framework.

 Suitable for high volume environments: It is based on the multiple row
data storage strategy (MVCC) which makes PostgreSQL highly responsive
in high volume environments. o Complete Internet solution: It comes with
everything that we need to Web-enable our company. Our website will be
leveraged with PHP 4 Scripting Language, Apache Web Server and the Zone
Application server with online access to the PostgreSQL datastore. o Easy

migration: It comes with various tools that help migrating data from other
DBMS.

A Brief History of PostgreSQL:
PostgreSQL started its journey as Postgres. It was created by Professor

Michael Stonebraker at UCB. He started Postgres as a follow-up project to Ingres

in 1986. Ingres was developed between 1977 and 1985 according to classic
RDBMS theory. Later in I994, it was acquired by Computer Associates. Postgres
was developed between 1986 and 1994. Its development included the
development of INGRES concepts focused on query language Quel and object
orientation. Its development was not based on the code base of INGRES. It was
commercialized as illustra and bought by Informix. Later in 2001, Informix was

bought by IBM. Postgres95 was developed between 1994 and 1995.

Two Ph.D. students, Jolly Chen and Andrew Yu at Stonebanker’s lab

replaced the POSTQUEL query language of Postgres with a subset of SQL and
renamed it Postgres95. In 1996, a group of developers outside of Berkeley
science department realize the potential of the system and devoted themselves to

the development of Postgres95. Over the next eight years, this group transformed
the Postgres. The group created detailed regression tests for quality assurance,
fixed bugs, set up a mailing list for bug reports, and brought consistency to the
code base. They also filled the various gaps like documentation for users and
developers. After it is transformed into new database it started a new life in open
source world with various new features and it took its current name PostgreSQL.

PostgreSQL started with version 6.0, over the next four years it moved

from version 6.0 to version 7 which was loaded with major improvements and
new features such as: Unique SQL features: Many new features were added like
subsets, constraints, defaults, foreign keys, primary keys, quoted identifiers,
type casting, binary and hexadecimal integer input. Multiversion Concurrency

Control (MVCC): The Multiversion concurrency has replaced the table-level

locking. It allows online backups when a database is running and enables
readers to read consistent data. Better built-in types: Improved native types were
added including the various date/time types and extra geometric

types. Improved Speed: Speed and performance were increased by 20 to 40
percent and the backend start-up time was reduced by 80 percent. During next
four years after the release of versions 7.0 and 7.4 again a number of features
were added to PostgreSQL.

These features were Write-Ahead Log (WAL), prepared queries, SQL

schemas, outer joins, SQL92 join syntax, complex queries, TOAST, IPv6, full-text

indexing, auto-vacuum, improved SSL support, database statistics information,
table functions, an optimizer overhaul, Perl/TCL procedural languages, Python,
etc. Today, PostgreSQL has a large user base and it continues to improve.
Version 8.0 of PostgreSQL is supposed to have features like table spaces, point
in time recovery, nestled transactions and java stored procedures. A number of
organizations including government entities and companies use PostgreSQL. We

can easily find it in ADO, NTT Data, CISCO, NOAA, The US Forestry Service,
Research in Motion and in The American Chemical Society.

FEATURES OF POSTGRESQL

Compatible with various platforms using all major languages and
middleware. It offers a most sophisticated locking mechanism Support for multi-

version concurrency control Mature Server-Side Programming Functionality
Compliant with the ANSI SQL standard Full support for client-server network
architecture Log-based and trigger-based replication SSL Standby server and
high availability Object-oriented and ANSI-SQL2008 compatible Support for
JSON allows linking with other data stores like NoSQL which act as a federated
hub for polyglot databases.

MYSQL POSTGRESQL

The MySQL project has made its source
code available under the terms of the GNU
License, and other proprietary agreements.

PostgreSQL is released under
PostgreSQL License.

It's now owned by Oracle Corporation and
offers several paid editions

It's free and open-source software. That
means we will never need to pay
anything for this service

MySQL is ACID compliant only when using
with NDB and InnoDB Cluster Storage
engines

PostgreSQL is completely ACID
compliant

MySQL performs well in OLAP and OLTP
systems where only read speed is
important.

PostgreSQL performance works best in
systems which demand the execution of
complex queries

MySQL is reliable and works well with BI
(Business Intelligence) applications, which
are difficult to read

PostgreSQL works well with BI
applications. However, it is more suited
for Data Warehousing and data analysis
applications which need fast read-write
speeds

Advantage of POSTGRESQL
 PostgreSQL can run dynamic websites and web apps as a LAMP stack

option

 PostgreSQL's write-ahead logging makes it a highly fault-tolerant database
 PostgreSQL source code is freely available under an open source license.

This allows us the freedom to use, modify, and implement it as per our
business needs.

 PostgreSQL supports geographic objects so we can use it for location-based
services and geographic information systems

 PostgreSQL supports geographic objects so it can be used as a geospatial

data store for location-based services and geographic information systems
 To learn Postgres, we don't need much training as its easy to use
 Low maintenance administration for both embedded and enterprise use

Disadvantage of POSTGRESQL

 Postgres is not owned by one organization. So, it has had trouble getting its

name out there despite being fully featured and comparable to other DBMS
systems

 Changes made for speed improvement requires more work than MySQL as
PostgreSQL focuses on compatibility

 Many open source apps support MySQL, but may not support PostgreSQL
 On performance metrics, it is slower than MySQL.

Key Features of PostgreSQL

PostgreSQL runs on all major operating systems, including Linux, UNIX
(AIX, BSD, HP-UX, SGI IRIX, Mac OS X, Solaris, Tru64), and Windows. It
supports text, images, sounds, and video, and includes programming interfaces
for C / C++, Java, Perl, Python, Ruby, Tcl and Open Database Connectivity

(ODBC). PostgreSQL supports a large part of the SQL standard and offers many
modern features including the following −

 Complex SQL queries
 SQL Sub-selects
 Foreign keys
 Trigger

 Views
 Transactions
 Multi-version concurrency control (MVCC)
 Streaming Replication (as of 9.0)
 Hot Standby (as of 9.0)

DATA TYPES

PostgreSQL supports a wide set of Data Types. Besides, users can
create their own custom data type using CREATE TYPE SQL command. There
are different categories of data types in PostgreSQL. They are discussed below.

Numeric Types
Numeric types consist of two-byte, four-byte, and eight-byte integers, four-byte
and eight-byte floating-point numbers, and selectable-precision decimals. The

following table lists the available types.

Name Storage
Size

Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes
typical choice for

integer
-2147483648 to
+2147483647

bigint 8 bytes large-range integer
9223372036854775808

to

9223372036854775807

decimal variable
user-specified
precision,exact

up to 131072 digits
before the decimal
point; up to 16383

digits after the decimal

point

numeric variable
user-specified
precision,exact

up to 131072 digits
before the decimal
point; up to 16383

digits after the decimal

point

real 4 bytes
variable-

precision,inexact
6 decimal digits

precision

double

precision
8 bytes

variable-

precision,inexact

15 decimal digits

precision

smallserial 2 bytes
small auto-

incrementing
integer

1 to 32767

serial 4 bytes
Auto-incrementing

integer
1 to 2147483647

bigserial 8 bytes
large auto-

incrementing
integer

1 to
9223372036854775807

Monetary Types

The money type stores a currency amount with a fixed fractional
precision. Values of the numeric, int, and bigint data types can be cast to money.
Using Floating point numbers is not recommended to handle money due to the

potential for rounding errors.

Name Storage
Size

Description Range

money 8 bytes currency amount
-92233720368547758.08 to
+92233720368547758.07

Character Types
The table given below lists the general-purpose character types available in
PostgreSQL.

Sl. No. Name & Description

1
character varying(n), varchar(n)

variable-length with limit

2
character(n), char(n)

fixed-length, blank padded

3
text

variable unlimited length

Binary Data Types
The bytea data type allows storage of binary strings as in the table given below.

Name Storage Size Description

bytea 1 or 4 bytes plus the actual binary string variable-length binary string

Date/Time Types
PostgreSQL supports a full set of SQL date and time types, as shown in table
below. Dates are counted according to the Gregorian calendar. Here, all the types

have resolution of 1 microsecond / 14 digits except date type, whose resolution
is day.

Name Storage Size Description Low Value High Value

timestamp [(p)]
[without time
zone]

8 bytes
both date and time
(no time zone)

4713 BC 294276 AD

TIMESTAMPTZ 8 bytes
both date and time,
with time zone

4713 BC 294276 AD

date 4 bytes date (no time of day) 4713 BC 5874897 AD

time [(p)] [
without time
zone]

8 bytes time of day (no date) 00:00:00 24:00:00

time [(p)] with
time zone

12 bytes
times of day only,
with time zone

00:00:00+1
459

24:00:00-
1459

interval [fields
] [(p)]

12 bytes time interval
-
178000000

years

178000000
years

Boolean Type
PostgreSQL provides the standard SQL type Boolean. The Boolean data type can
have the states true, false, and a third state, unknown, which is represented by

the SQL null value.

Name Storage Size Description

boolean 1 byte state of true or false

Enumerated Type
Enumerated (enum) types are data types that comprise a static, ordered set of
values. They are equivalent to the enum types supported in a number of

programming languages.

Unlike other types, Enumerated Types need to be created using
CREATE TYPE command. This type is used to store a static, ordered set of
values. For example compass directions, i.e., NORTH, SOUTH, EAST, and WEST
or days of the week as shown below –

CREATE TYPE week AS ENUM ('Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun');

Enumerated, once created, can be used like any other types.

Geometric Type
Geometric data types represent two-dimensional spatial objects. The most

fundamental type, the point, forms the basis for all of the other types. (point,
line, lseg, box, path, polygon, circle)

Network Address Type
PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses. It is better
to use these types instead of plain text types to store network addresses, because

these types offer input error checking and specialized operators and functions.
(cidr, inet, macaddr)

Bit String Type
Bit String Types are used to store bit masks. They are either 0 or 1. There are
two SQL bit types: bit(n) and bit varying(n), where n is a positive integer.

Text Search Type
This type supports full text search, which is the activity of searching through a
collection of natural-language documents to locate those that best match a
query. There are two Data Types for this – (tsvector, tsquery)

Array Type
PostgreSQL gives the opportunity to define a column of a table as a variable
length multidimensional array. Arrays of any built-in or user-defined base type,
enum type, or composite type can be created.

Declaration of Arrays
Array type can be declared as

CREATE TABLE monthly_savings (
 name text,
 saving_per_quarter integer[],
 scheme text[][]
);

or by using the keyword "ARRAY" as
CREATE TABLE monthly_savings (
 name text,
 saving_per_quarter integer ARRAY[4],
 scheme text[][]
);

Inserting values
Array values can be inserted as a literal constant, enclosing the element values
within curly braces and separating them by commas. An example is shown

below:
INSERT INTO monthly_savings
VALUES (‘Manisha’,
‘{20000, 14600, 23500, 13250}’,
‘{{“FD”, “MF”}, {“FD”, “Property”}}’);

Accessing Arrays
An example for accessing Arrays is shown below. The command given below will
select the persons whose savings are more in second quarter than fourth
quarter.

SELECT name FROM monhly_savings WHERE saving_per_quarter[2] >
saving_per_quarter[4];

POSTGRESQL COMMANDS

CREATE DATABASE,
The CREATE DATABASE statement is used to create new PostgreSQL database.

Syntax:- CREATE DATABASE databasename;

Example:- CREATE DATADASE college;

CREATE TABLE

CREATE TABLE is a keyword, telling the database system to create a
new table. The unique name or identifier for the table follows the CREATE
TABLE statement. Initially, the empty table in the current database is owned by
the user issuing the command. Then, in brackets, comes the list, defining each
column in the table and what sort of data type it is.

Syntax
CREATE TABLE table_name (
 Column1_name TYPE column_constraint,
 Column2_name TYPE column_constraint,
 Column3_name TYPE column_constraint,

 ColumnN_name TYPE column_constraint,)
);

Example
CREATE TABLE books (
 bookid char(5) PRIMARY KEY,
 title varchar(40) NOT NULL,
 publisher varchar(40) NOT NULL,
 price integer NOT NULL,
);

CREATE TABLE Persons (

PersonID int,

LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)

);

Note:-
To show the schema or description of table

\d table name ;

PostgreSQL column constraints
 NOT NULL – the value of the column cannot be NULL.

 UNIQUE – the value of the column must be unique across the whole table.
However, the column can have many NULL values because PostgreSQL
treats each NULL value to be unique. Notice that SQL standard only allows
one NULL value in the column that has the UNIQUE constraint.

 PRIMARY KEY – this constraint is the combination of NOT
NULL and UNIQUE constraints. We can define one column as PRIMARY

KEY by using column-level constraint. In case the primary key contains
multiple columns, we must use the table-level constraint.

 CHECK – enables to check a condition when we insert or update data. For
example, the values in the price column of the product table must be
positive values.

 REFERENCES – constrains the value of the column that exists in a column

in another table. We use REFERENCES to define the foreign key
constraint.

CREATE TABLE AS

The PostgreSQL CREATE TABLE AS statement is used to create a
table from an existing table by copying the existing table's columns. It is

important to note that when creating a table in this way, the new table will be
populated with the records from the existing table (based on the SELECT
Statement).

The PostgreSQL CREATE TABLE AS statement is used to create a

table from an existing table by copying the existing table's columns. It is

important to note that when creating a table in this way, the new table will be

populated with the records from the existing table (based on the SELECT
Statement).

Syntax

CREATE TABLE new_table_name AS query;

Example

CREATE TABLE inventory AS
 SELECT *
 FROM products
 WHERE quantity > 5;

SELECT

PostgreSQL SELECT statement is used to fetch the data from a database
table, which returns data in the form of result table. These result tables are

called result-sets.

Syntax:
SELECT column1, column2, columnN FROM table_name;

Here, column1, column2...are the fields of a table whose values we want to fetch.

If we want to fetch all the fields available in the field, then we can use the
following syntax:

SELECT * FROM table_name;

Example

Example Description

SELECT Empid, fname, salary FROM
 customer;

It will display Empid, fname, salary
columns only

SELECT * FROM customer; It will display all columns

Because of its complexity, we will break down the PostgreSQL SELECT statement
tutorial into many shorter and easy-to-understand tutorials so that we can learn
the functionality of each clause faster.

The SELECT statement has the following clauses:

 Select distinct rows using DISTINCT operator.
 Sort rows using ORDER BY clause.
 Filter rows using WHERE clause.
 Select a subset of rows from a table using LIMIT or FETCH clause.

 Group rows into groups using GROUP BY clause
 Filter groups using HAVING clause.
 Join with other tables using joins such as INNER JOIN, LEFT JOIN, FULL

OUTER JOIN, CROSS JOIN clauses.
 Perform set operations using UNION, INTERSECT, and EXCEPT.

SELECT INTO
The PostgreSQL SELECT INTO statement allows us to create a new

table and inserts data returned by a query. The new table columns have name

and data types associated with the output columns of the SELECT clause.
Unlike the SELECT statement, the SELECT INTO statement does not return data
to the client.
Syntax

SELECT *
INTO newtable [IN externaldb]
FROM table1;

SELECT column_name(s)
INTO newtable [IN externaldb]
FROM table1;

Example Description

SELECT * INTO CustomersBackup2019
FROM Customers;

Create a backup copy of
Customers:

SELECT * INTO CustomersBackup2019 IN
Backup.mdb' FROM Customers;

Use the IN clause to copy the
table into another database:

SELECT CustomerName, ContactName
INTO CustomersBackup2019 FROM
Customers;

Copy only a few columns into the
new table:

SELECT * INTO CustomersBackup2019
FROM Customers WHERE
Country='Germany';

Copy only the German customers
into the new table:

SELECT Customers.CustomerName,
Orders.OrderID INTO
CustomersOrderBackup2019 FROM
Customers LEFT JOIN Orders ON
Customers.CustomerID=Orders.CustomerID;

Copy data from more than one
table into the new table:

DELETE

The PostgreSQL DELETE statement is used to delete a single record or
multiple records from a table in PostgreSQL.
Syntax:-

DELETE FROM table_name [WHERE conditions];

Example
DELETE FROM book WHERE price < 100 ;
DELETE FROM contacts WHERE first_name = 'Vimala';

The PostgreSQL UPDATE Query is used to modify the existing records
in a table. We can use WHERE clause with UPDATE query to update the selected
rows. Otherwise, all the rows would be updated.

Syntax

UPDATE table_name SET column1 = value1, column2 = value2...., columnN
= valueN WHERE [condition];

Example

UPDATE COMPANY SET SALARY = 15000 WHERE ID = 3;

UPDATE contacts SET first_name = 'Jane' WHERE contact_id = 35;

UPDATE contacts SET city='Miami', state='Florida' WHERE contact_id >= 200;

INSERT INTO

The PostgreSQL INSERT statement is used to insert a single record or
multiple records into a table in PostgreSQL. One can insert a single row at a time
or several rows as a result of a query.

Syntax

INSERT INTO TABLE_NAME (column1, column2, column3,...columnN)
VALUES (value1, value2, value3,...valueN);

If we can use all attribute in same order
INSERT INTO TABLE_NAME VALUES (value1, value2, value3,...valueN);

If we can insert multiple rows at a same time

INSERT INTO table (column1, column2, …)
VALUES
 (value1, value2, …),
 (value1, value2, …) ,...;

Example

INSERT INTO users (age, email, first_name, last_name) VALUES (30,
'pkandoubleos@gmail.com', 'Arjun', 'Kumar’);

INSERT INTO users VALUES (2, 22, 'John', 'Smith', 'john@smith.com');

INSERT INTO "EMPLOYEES"(
"ID", "NAME", "AGE", "ADDRESS", "SALARY")
VALUES (1, 'Ajeet', 25, 'Mau ', 65000.00), (2, 'Rakul', 21, 'Shimla', 85000.00),
(3, 'Manisha', 24, 'Mumbai', 65000.00), (4, 'Larry', 21, 'Paris', 85000.00);

PHP - POSTGRESQL INTEGRATION:

1. pg_connect(),

2. pg_connection_status()
3. pg_dbname()
4. pg_last_error()
5. pg_close()
6. pg_query()
7. pg_execute()
8. pg_fetch_row()

9. pg_fetch_array()
10. pg_fetch_all()
11. pg_fetch_assoc()
12. pg_fetch_object()
13. pg_num_rows()
14. pg_num_fields()

15. pg_affected_rows()
16. pg_free_result()

1. pg_connect()

It is a function to use to connect to a PostgreSQL database, returning a
database handle. PostgreSQL requires connection parameters to be submitted as
a single string, denoted by connection_string. Several parameters are recognized
in this string, including:

 connect_timeout: The number of seconds to continue waiting for a

connection response. Specifying zero or no value will cause the function to
wait indefinitely.

 dbname: The name of the database we’d like to connect to.
 host: The server location as defined by a hostname, such as

www.example.com, ecommerce, or localhost.
 hostaddr: The server location as defined by an IP address, such as

192.168.1.104.
 password: The connecting user’s password.
 port: The port on which the server operates. By default, this is 5432;

therefore, we need to specify this parameter only if the destination server is
operating on another port.

 user: The connecting user.

Syntax

pg_connect(connection_string)

Example

$pg = pg_connect("host=localhost user=postgres password=gems
dbname=college");

2. pg_close()
The database connections opened during the execution of a script are

automatically closed once the script completes. The connection will be closed as

soon as the script ends. To close the connection before end the script we can all
the function pg_close().

Syntax

pg_close(connection)

Example

<?php
$pg = pg_connect("host=localhost user=postgres password=gems
dbname=college") or die("Can't connect to database.");
echo "This is where database operations are performed.";
pg_close();
?>

If multiple connections to, say, different databases are open, we can close each
as its services are no longer needed. For instance:

<?php
$pg = pg_connect("host=localhost user=postgres password=gems
dbname=college");
$pg2 = pg_connect("host=example.com user=postgres password=gems
dbname=school");
echo "Perform some database operations.
";
// We're finished with $pg2, so close the connection
pg_close($pg2);
echo "Perform additional database operations.";
// Close the $pg connection
pg_close($pg);
?>

Example Output

<?php
$db=college;
$con = pg_connect("host=localhost dbname=$db
user=postgres password=gems");
if (!$con) {
die('Could not connected to college:
'.pg_last_error());
}
else
echo 'Successfully Connected to '. $db;
pg_close($con);
?>

Successfully Connected
to college

3. pg_query()
The pg_query() is used to execute query on the default database. Before

performing any operation on a PostgreSQL database, it is required to set a

connection to the PostgreSQL database we want to work with it. And this is done
by pg_connect() function.

Syntax

pg_query(query, connection_string);

Where query specifies the query string and is required. The connection specified

the PostgreSQL connection to use and is required. If not specified the last
connection opened by pg_connect() is used.

Example

<?php
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
if ($con) {
 echo 'Successfully Connected to '. $db."

";
 $qry="select * from student";
 $result=pg_query($con, $qry);
 while ($row = pg_fetch_row($result)) {
 echo "
\n";
 echo "regno: $row[0] name: $row[1] age: $row[2] mark: $row[4]";
 }
}
else
 die('Could not connected to college: '.pg_last_error());
pg_close($con);
?>

Output

Successfully Connected to college

regno: 102 name: raju age: 17 mark: 54
regno: 105 name: vani age: 19 mark: 67
regno: 103 name: arjun age: 20 mark: 81
regno: 108 name: kumar age: 17 mark: 55
regno: 107 name: sukanya age: 19 mark: 95

4. pg_execute()

It sends a request to execute a prepared statement with given
parameters, and waits for the result. The command to be executed is specified by
naming a previously-prepared statement, instead of giving a query string. This

feature allows commands that will be used repeatedly to be parsed and planned

just once, rather than each time they are executed. The statement must have
been prepared previously in the current session. pg_execute() is supported only
against PostgreSQL 7.4 or higher connections; it will fail when using earlier

versions.

Syntax

pg_execute ($connection, string, array)

Example

<?php
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
if ($con) {
 echo 'Successfully Connected to '. $db."

";
 $result=pg_prepare($con, "myqry","select * from student where
name=$1");
 $result=pg_execute($con, "myqry",array("vinusha"));
 while ($row = pg_fetch_row($result)) {
 echo "
\n";
 echo "regno: $row[0] name: $row[1] age: $row[2] mark: $row[4]";
 }
 echo "

";
 $result=pg_execute($con, "myqry",array("vimala"));
 while ($row = pg_fetch_row($result)) {
 echo "
\n";
 echo "regno: $row[0] name: $row[1] age: $row[2] gender: $row[3]
mark: $row[4]";
 }
}
else
 die('Could not connected to college: '.pg_last_error());
pg_close($con);
?>

5. pg_last_error()

It returns the last error message for a given connection. The error
messages may be overwritten by internal PostgreSQL (libpq) function calls. It
may not return an appropriate error message if multiple errors occur inside a
PostgreSQL module function.

Syntax

pg_last_error(connection)

Example

<?php
$db=college;

$con = pg_connect("host=localhost dbname=$db user=postgares
password=gems");
if (!$con) {
 die('Could not connected to college: ');
 echo pg_last_error($con);
}
else
 echo 'Successfully Connected to '. $db;
pg_close($con);
?>

6. pg_connection_status()
It returns the status of the specified connection.

Syntax

pg_connection_status (connection);

Example

<?php
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
$start=pg_connection_status($con);
if ($start == pgsql_connection_ok) {
 echo 'Connection status is OK';
} else {
 echo 'Connection status NOT OK';
}
pg_close($con);
?>

Output
Connection status is OK

7. pg_dbname()
It returns the name of the database of given PostgreSQL connection resource.

Syntax

pg_dbname (connection)

Example
<?php
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
echo "The current database name is ".pg_dbname($con);
pg_close($con);

?>

Output
The current database name is college

8. pg_fetch_row()
It fetches one row of data from the result associated with the
specified result resource.

Syntax

pg_fetch_row ($result)

Example

<?php
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
if ($con) {
 echo 'Successfully Connected to '. $db."

";
 $qry="select name, mark from student";
 $result=pg_query($con, $qry);
 while ($row = pg_fetch_row($result)) {
 echo "
\n";
 echo "name: $row[0] mark: $row[1]";
 }
}
else
 die('Could not connected to college: '.pg_last_error());
pg_close($con);
?>

Output
Successfully Connected to college

name: raju mark: 54
name: vani mark: 67
name: arjun mark: 81
name: kumar mark: 55
name: sukanya mark: 95

9. pg_fetch_array()
It is an extended version of pg_fetch_row(). In addition to storing the data in the
numeric indices (field number) to the result array, it can also store the data
using associative indices (field name). It stores both indicies by default.

Syntax
pg_fetch_array (result)

Example
<?php
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
if ($con) {
 echo 'Successfully Connected to '. $db."

";
 $qry="select name, mark from student";
 $result=pg_query($con, $qry);
 while($arr=pg_fetch_array($result,NULL,PGSQL_NUM)){
 echo $arr[0];
 echo $arr[1];
 echo "
";
 }
}
else
 die('Could not connected to college: '.pg_last_error());
pg_close($con);
?>

Output
Successfully Connected to college

raju 54

vani 67
arjun 81
kumar 55
sukanya 95

10. pg_fetch_all()
It r returns an array that contains all rows (records) in the result resource.

Syntax

pg_fetch_all ($result);

Example

<?php
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
if ($con) {
 echo 'Successfully Connected to '. $db."

";
 $qry="select * from student";

 $result=pg_query($con, $qry);
 if (!$result) {
 echo "An error occurred.\n";
 exit;
 }
 $arr = pg_fetch_all($result);
 print_r($arr);
}
else
 die('Could not connected to college: '.pg_last_error());
pg_close($con);
?>

Output

Successfully Connected to college

Array ([0] => Array ([regno] => 102 [name] => raju [age] => 17 [gender] => m
[mark] => 54) [1] => Array ([regno] => 105 [name] => vani [age] => 19
[gender] => f [mark] => 67) [2] => Array ([regno] => 103 [name] => arjun [age]
=> 20 [gender] => m [mark] => 81) [3] => Array ([regno] => 108 [name] =>
kumar [age] => 17 [gender] => m [mark] => 55) [4] => Array ([regno] => 107
[name] => sukanya [age] => 19 [gender] => f [mark] => 95))

11. pg_fetch_assoc()
It returns an associative array that corresponds to the fetched row (records). It is
equivalent to calling pg_fetch_array() with PGSQL_ASSOC as the optional third
parameter. It only returns an associative array. If we need the numeric indices,

use pg_fetch_row().

Syntax

pg_fetch_assoc (result);

Example

<?php
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
if ($con) {
 echo 'Successfully Connected to '. $db."

";
 $qry="select regno, name, mark from student";
 $result=pg_query($con, $qry);
 if (!$result) {
 echo "An error occurred.\n";
 exit;
 }
 while ($row = pg_fetch_assoc($result)) {

 echo $row['regno']." ";
 echo $row['name']." ";
 echo $row['mark']." ";
 echo"
";
 }
}
else
 die('Could not connected to college: '.pg_last_error());
pg_close($con);
?>

Output

Successfully Connected to college

102 raju 54
105 vani 67
103 arjun 81
108 kumar 55
107 sukanya 95

12. pg_fetch_object()
It returns an object with properties that correspond to the fetched row's field

names. It can optionally instantiate an object of a specific class, and pass
parameters to that class's constructor.

Syntax

g_fetch_object (result);

Example

<?php
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
if ($con) {
 echo 'Successfully Connected to '. $db."

";
 $qry="select * from student order by name";
 $result=pg_query($con, $qry);
 if (!$result) {
 echo "An error occurred.\n";
 exit;
 }
 while ($data = pg_fetch_object($result)) {
 echo $data->regno . " (";
 echo $data->name . "): ";
 echo $data->mark . "
";
 }

 pg_free_result($result);
}
else
 die('Could not connected to college: '.pg_last_error());
pg_close($con);
?>

Output

Successfully Connected to college

103 (arjun): 81
108 (kumar): 55
102 (raju): 54
107 (sukanya): 95
105 (vani): 67

13. pg_num_rows()
It will return the number of rows in a PostgreSQL result resource.

Synatx

pg_num_rows (result);

Example
<?php
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
if ($con) {
 echo 'Successfully Connected to '. $db."

";
 $qry="select * from student";
 $result=pg_query($con, $qry);
 if (!$result) {
 echo "An error occurred.\n";
 exit;
 }
 $rows = pg_num_rows($result);
 echo $rows . " row(s) returned.\n";
}
else
 die('Could not connected to college: '.pg_last_error());
pg_close($con);
?>

Output
Successfully Connected to college

6 row(s) returned.

14. pg_num_fields()
It returns the number of fields (columns) in a PostgreSQL result resource.

Synatx

pg_num_fields (result);

Example

<?php
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
if ($con) {
 echo 'Successfully Connected to '. $db."

";
 $qry="select * from student";
 $result=pg_query($con, $qry);
 if (!$result) {
 echo "An error occurred.\n";
 exit;
 }
 $num = pg_num_fields($result);
 echo $num . " field(s) returned.\n";
}
else
 die('Could not connected to college: '.pg_last_error());
pg_close($con);
?>

Output

Successfully Connected to college

5 field(s) returned.

15. pg_affected_rows()
It returns the number of tuples (instances/records/rows) affected
by INSERT, UPDATE, and DELETE queries. Since PostgreSQL 9.0 and above, the

server returns the number of selected rows. Older PostgreSQL return 0 for
SELECT.

Syntax

pg_affected_rows (result);

Example
<?php
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
if ($con) {
 echo 'Successfully Connected to '. $db."

";
 $qry="select * from student where mark > 60";
 $result=pg_query($con, $qry);
 if (!$result) {
 echo "An error occurred.\n";
 exit;
 }
 $cmdtuples = pg_affected_rows($result);
 echo $cmdtuples . " tuples are affected.\n";
}
else
 die('Could not connected to college: '.pg_last_error());
pg_close($con);
?>

Output

Successfully Connected to college

4 tuples are affected.

16. pg_free_result()
It frees the memory and data associated with the specified PostgreSQL query

result resource. This function need only be called if memory consumption during
script execution is a problem. Otherwise, all result memory will be automatically
freed when the script ends.

Synatx

pg_free_result (result);

Example

<?php
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
if ($con) {
 echo 'Successfully Connected to '. $db."

";
 $qry="select * from student where gender = 'f'";
 $result=pg_query($con, $qry);
 if (!$result) {
 echo "An error occurred.\n";
 exit;

 }
 $num = pg_num_rows($result);
 echo $num . " row(s) returned.\n";
 pg_free_result($result);
}
else
 die('Could not connected to college: '.pg_last_error());
pg_close($con);
?>

Output
Successfully Connected to college

3 row(s) returned.

INSERTION AND DELETION OF DATA USING PHP

Example of Insertion of data using PHP

<html><head>
<title>Retriving of data from PHP</title>
</head><body>
<form action="" method="post">
 <h2>Enter the Details of a STUDENT</h2>
</br>
 Enter the Reg No
 <input type="text" name="reg">

 Enter the Name
 <input type="text" name="fname">

 Enter the Age
 <input type="text" name="years">

 Enter the Gender
 <input type="text" name="gen">

 Enter the Mark
 <input type="text" name="score">

<input type="submit" />
</form></body></html>
<?php
if ($_POST){
$reg1=$_POST['reg'];
$fname1=$_POST['fname'];
$years1=$_POST['years'];
$gen1=$_POST['gen'];
$score1=$_POST['score'];
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");

if ($con) {
 echo '

Successfully Connected to '. $db."

";
 $qry="select * from student";
 $result=pg_query($con, $qry);
 while ($row = pg_fetch_row($result)) {
 echo "
\n";
 echo "regno: $row[0] name: $row[1] age: $row[2] gender: $row[3]
mark: $row[4]";
 }
 echo"
rrrrrrrr
";
 $qry1="insert into student
(regno,name,age,gender,mark)values($reg1,'$fname1',$years1,'$gen1',$score
1)";
 $result1=pg_query($con, $qry1);
 $result=pg_query($con, $qry);
 while ($row = pg_fetch_row($result)) {
 echo "
\n";
 echo "regno: $row[0] name: $row[1] age: $row[2] gender: $row[3]
mark: $row[4]";
 }
}
else
 die('Could not connected to college: '.pg_last_error());
pg_close($con);
}
?>

Output

Example of Deletion of data using PHP
<html>
<head>
<title>Deleting of data from PHP</title>
</head>
<body>
<form action="" method="post">
 <h2>Enter the Datais of a STUDENT</h2>
</br>
 <h3>Enter the Reg No to DELETE
 <input type="text" name="reg">

<input type="submit" />
</form>
</body>
</html>

<?php

if ($_POST){
$no=$_POST['reg'];
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
if ($con) {
 echo '

Successfully Connected to '. $db."

";
 $qry1="select * from student";
 $qry2="delete from student where regno = $no";
 $result1=pg_query($con, $qry1);
 while ($row = pg_fetch_row($result1)) {
 echo "
\n";
 echo "regno: $row[0] name: $row[1] age: $row[2] gender: $row[3]
mark: $row[4]";
 }
 echo "

Regno $no is now deleted
";
 $result2=pg_query($con, $qry2);
 $result1=pg_query($con, $qry1);
 while ($row = pg_fetch_row($result1)) {
 echo "
\n";
 echo "regno: $row[0] name: $row[1] age: $row[2] gender: $row[3]
mark: $row[4]";
 }
}
else
 die('Could not connected to college: '.pg_last_error());
pg_close($con);
}
?>

Output

DISPLAYING DATA FROM POSTRGRESQL DATABASE IN WEBPAGE

Example
<html><head>
<title>Retriving of data from PHP</title>
</head><body>
<form action="" method="post">
 <h2>Enter the Details of a STUDENT</h2>
</br>
 <h3>Enter the Reg No
 <input type="text" name="reg">

<input type="submit" />
</form></body></html>

<?php
if ($_POST){
$no=$_POST['reg'];
$db=college;
$con = pg_connect("host=localhost dbname=$db user=postgres
password=gems");
if ($con) {
 echo '

Successfully Connected to '. $db."

";
 $qry="select * from student where regno =$no";
 $result=pg_query($con, $qry);
 while ($row = pg_fetch_row($result)) {

 echo "
\n";
 echo "regno: $row[0] name: $row[1] age: $row[2] gender: $row[3]
mark: $row[4]";
 }
}
else
 die('Could not connected to college: '.pg_last_error());
pg_close($con);
}
?>

Output

INTRODUCTION TO AJAX

AJAX is Asynchronous JavaScript and XML) is a set of web
development techniques using many web technologies on the client-side to create

asynchronous Web applications. Ajax is a client-side script that communicates
to and from a server/database without the need for a post back or a complete
page refresh. The best definition for Ajax is “the method of exchanging data with
a server, and updating parts of a web page - without reloading the entire page.”

AJAX is a new technique for creating better, faster, and more

interactive web applications with the help of XML, HTML, CSS and Java Script.
Conventional web application transmit information to and from the sever using
synchronous requests. This means we fill out a form, hit submit, and get
directed to a new page with new information from the server. With AJAX when
submit is pressed, JavaScript will make a request to the server, interpret the

results and update the current screen. In the purest sense, the user would never
know that anything was even transmitted to the server.

Classic web pages, (which do not use AJAX) must reload the entire
page if the content should change. Examples of applications using AJAX: Google
Maps, Gmail, Youtube, and Facebook tabs. Following diagram shows how AJAX
works.

AJAX is based on internet standards, and uses a combination of:

 XMLHttpRequest object (to exchange data asynchronously with a server)
 JavaScript/DOM (to display/interact with the information)
 CSS (to style the data)
 XML (often used as the format for transferring data)

AJAX applications are browser- and platform-independent. AJAX was made

popular in 2005 by Google, with Google Suggest. Google Suggest is using AJAX
to create a very dynamic web interface: When we start typing in Google's search
box, a JavaScript sends the letters off to a server and the server returns a list of
suggestions.

IMPLEMENTATION OF AJAX IN PHP
 AJAX is used to create more interactive applications. The following
example will demonstrate how a web page can communicate with a web server
while a user type characters in an input field:

In the example above, when a user types a character in the input
field, a function called "showHint()" is executed. The function is triggered by the
onkeyup event. Here is the HTML code:

<html> <head> <script>
function showHint(str) {
if (str.length == 0) {
document.getElementById("txtHint").innerHTML = "";
return;
} else {
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange = function() {
if (this.readyState == 4 && this.status == 200) {
document.getElementById("txtHint").innerHTML = this.responseText;
}
};
xmlhttp.open("GET", "gethint.php?q=" + str, true);
xmlhttp.send();
}
}
</script> </head> <body>
<pStart typing a name in the input field below:</p >
<form>
First name: <input type=="text" onkeyup=="showHint(this.value)"=>
</form>
<p>Suggestions: </p > </body> </html>

Code explanation:

First, check if the input field is empty (str.length == 0). If it is, clear

the content of the txtHint placeholder and exit the function. However, if the input
field is not empty, do the following:

 Create an XMLHttpRequest object
 Create the function to be executed when the server response is ready
 Send the request off to a PHP file (gethint.php) on the server
 Notice that q parameter is added to the url (gethint.php?q="+str)

 And the str variable holds the content of the input field

The PHP File - "gethint.php"
The PHP file checks an array of names, and returns the corresponding name(s)
to the browser:

<?php
// Array with names
$a[] = "Anna";
$a[] = "Brittany";
$a[] = "Cinderella";
$a[] = "Diana";
$a[] = "Eva";
$a[] = "Fiona";
$a[] = "Gunda";
$a[] = "Hege";
$a[] = "Inga";
$a[] = "Johanna";
$a[] = "Kitty";
$a[] = "Linda";
$a[] = "Nina";
$a[] = "Ophelia";
$a[] = "Petunia";
$a[] = "Amanda";
$a[] = "Raquel";
$a[] = "Cindy";
$a[] = "Doris";
$a[] = "Eve";
$a[] = "Evita";
$a[] = "Sunniva";
$a[] = "Tove";
$a[] = "Unni";
$a[] = "Violet";
$a[] = "Liza";
$a[] = "Elizabeth";
$a[] = "Ellen";
$a[] = "Wenche";
$a[] = "Vicky";

// get the q parameter from URL
$q = $_REQUEST["q"];
$hint = "";
// lookup all hints from array if $q is different from ""
if ($q !== "") {
 $q = strtolower($q);
 $len=strlen($q);
 foreach($a as $name) {
 if (stristr($q, substr($name, 0, $len))) {
 if ($hint === "") {
 $hint = $name;

 } else {
 $hint .= ", $name";
 }
 }
 }
}
// Output "no suggestion" if no hint was found or output correct values
echo $hint === "" ? "no suggestion" : $hint;
?>

