

MODULE IV

PASSING INFORMATION BETWEEN PAGES
 PHP will catch the variable entered from one page to the next and
make it available for further use. PHP is good in this form handling technology
that is data passing function which makes it fast and easy to do for a wide
variety of websites tasks.

HTML forms are mostly useful for passing a few values from a given

page to one single other page of a website. In HTP, the most basic technologies of
information passages between web pages utilize GET and POST methods to
create dynamically generated pages and to handle form data. These $_GET and
$_POST are used to collect form data.

GET AND POST METHOD
 The GET method passes arguments or values from one page to
another as the part of uniform resource indicator query string. When it is used
the GET method appends the indicated variable names and values to the URL
designed in the ACTION attribute with a “?” (Question marks) separates and
submit the whole thing to the processing agents. Here it is the web server.

Example Output
login.php file
<html >
<body >
<form action="welcome.php" method="get">
Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="submit">
</form>
</body>
</html>

Name:
Sharukh K

E-mail:

Submit

welcome.php file
<html>
<body>
Welcome <?php echo $_GET["name"]; ?>

Your email address is: <?php echo
$_GET["email"]; ?>
</body>
</html>

Welcome Sharukh Khan
Your email address is:
sharook@gmail.com

$_GET Function
 The built in $_GET function is used to collect values from send with
method=”GET”. Information sent from a form with the GET method is visible to
every one. First will be displayed in the web browser title bar and has limits on
the amount of information to send. When the user enters the name and email
and click the submit button from the above example, the URL sent to server
could look something like this:

http://localhost/MODULE%20%20II/welcome.php?name=Sharukh+Khan&e
mail=sharook%40gmail.com

This welcome.php file can now use the $_GET function to collect form data.
When using method=GET in HTML forms all variable names and values are
displayed in the URL. So this method should not be used when sending
passwords or sensitive information, because the variables are displayed in the
URL. It is possible to bookmark the page.

 The GET method is not suitable for vary large variable values. It
should not be used with values exceeding 2000 characters. So we use POST
method and $_POST function.

 The built in $_POST function is used to collect values from a form
send with method=”POST”. Information send from a form with the post method is
invisible to others and has no limit on the amount of information to send. There
is an 8MB of maximum size for POST method.

Example Output
form1.php file
<html ><body >
<form action="welcome1.php"
method="post">
Choose Your Favorite Sports

<select name="sports">
<option value="Select">
<option value="Base Ball">Base Ball
<option value="Foot Ball">Foot Ball
<option value= "Cricket">Cricket
<option value="Hocky">Hocky
</select>

<input type="submit" name="submit"
value="select">
</form></body></html>

Choose Your Favorite Sports

select

welcome1.php file
<html><body>
<p> You have indicated that you like
<?php echo $_POST["sports"]; ?>

</body></html>

You have indicated that you like Foot
Ball

When the user fills the form and clicks the select button the URL will look like:
 http://localhost/MODULE%20%20II/welcome1.php
The welcome1.php file can now use the $_POST function to collect form data,
because the variables are not displayed on the URL. It is not possible to
bookmark the page.

Disadvantage of POST
 The result of a given moment cannot be bookmarked. The web
browser exhibits different behavior when the visible users the back and forward
navigation button within the function.

GET vs. POST

Both GET and POST create an array (e.g. array(key => value, key2 =>
value2, key3 => value3, ...)). This array holds key/value pairs, where keys are
the names of the form controls and values are the input data from the user. Both
GET and POST are treated as $_GET and $_POST. These are super global, which
means that they are always accessible, regardless of scope - and we can access
them from any function, class or file without having to do anything special.

$_GET is an array of variables passed to the current script via the

URL parameters. $_POST is an array of variables passed to the current script via
the HTTP POST method.

When to use GET?

Information sent from a form with the GET method is visible to
everyone (all variable names and values are displayed in the URL). GET also has
limits on the amount of information to send. The limitation is about 2000
characters. However, because the variables are displayed in the URL, it is
possible to bookmark the page. This can be useful in some cases. GET may be
used for sending non-sensitive data. GET should NEVER be used for sending
passwords or other sensitive information!

When to use POST?

Information sent from a form with the POST method is invisible to
others (all names/values are embedded within the body of the HTTP request) and
has no limits on the amount of information to send. Moreover POST supports
advanced functionality such as support for multi-part binary input while
uploading files to server. However, because the variables are not displayed in the
URL, it is not possible to bookmark the page.

$_REQUEST Function
 The built in function $_REQUEST contains the contents of both
$_GET and $_POST. It is used to collect form data and send with both the GET
and POST method.

STRING FUNCTIONS:
 A string is a sequence of characters that can be treated as a unique
assigned to variables given as functions to appear on user’s webpage. There are
so many string functions are used in PHP.

 strlen()
It is used to return the length of a string. The length of the string often used in
loop or other functions when it is important to know when the string ends. In a

loop we want to stop the loop after the last character in the string. The example
below returns the length of the string "Hello world!":

Example Output
<?php
echo strlen("Hello world!");
?>

12

 strpos()

 It is used to search for a character or text within a string. If a match
is found, this function returns the character position of the first match. If no
match is found, it will return false. The first character position in a string is 0
(not 1). The example below searches for the text "world" in the string "Hello
world!":

Example Output
<?php
echo strpos("Hello world!", "world");
?>

6

 strstr()

 strcmp()

This function compares two strings and return
zero if String1 = String2
less than zero if String1 < String2
grater than zero if String1 > String2

Example Output
<?php
echo strcmp("Hello World!","Hello World!")."
";
echo strcmp("Hello World!","hello world!")."
";
echo strcmp("hello world!","Hello World!");
?>

0
-1
1

 substr()

The function returns a part of a string.
Substrt(String, Start, Length);

Where string specifies the string to return a path. Start specifies where to start
in the string. Length specifies the length of the returned string.

Example Output
<?php
echo substr("Hello World",6)."
";
echo substr("Hello World",10)."
";
echo substr("Hello World",3)."
";
echo substr("Hello World",-8)."
";
echo substr("Hello World",18)."
";
?>

World
d
lo World
lo World

 str_replace()
The function replaces a part of a string with another string.
 Substr_replace(string, replacement, start, length);

Example Output
<?php
echo substr_replace("Hello world", "Earth", 6);
?>

Hello Earth

 strtolower()

The function is used to convert a string into lowercase.
Example Output

<?php
echo strtolower("HelLo WoRlD");
?>

hello world

 ucfirst()

The function converts the first character of the string to uppercase.
Example Output

<?php
echo ucfirst("hello World, How are you");
?>

Hello World, How are you

 ucwords()

The function converts the first character of the each word in a string to
uppercase.

Example Output
<?php
echo ucwords("helLo world how are you");
?>

HelLo World How Are You

ARRAY CONSTRUCTS:

An array is a collection of variables indexed and bundled into single
easy referenced super variables that offers an easy way to pass multiple values
between lines of code, functions and even webpages. Each element in the array
has its own index. So that it can be easily accessed.
Example

S$abc=array(“blue”,”red”,”green”,”yellow”);
$abc[]=blue
$abc[]=red
$abc[]=green
$abc[]=yellow

In PHP there are three types of arrays
 Numeric Array

 An array with a numeric Index
 Associative Array

 An array where each id key is associated with a value
 Multidimensional Array

 An array containing one or more array

1. Numeric Array
A numeric array stores each array element with a numeric index.

There are two methods to create a numeric array.
a) Automatically assigned index method

Example Output
<html><body>
<?php
$cars=array("suzuki","vovlvo","bmw","toyoto");
print_r($cars);
?>
</body></html>

Array ([0] => suzuki [1] => vovlvo

[2] => bmw [3] => toyoto)

b) Manually assigned index method

Example Output
<html><body>
<?php
$cars=array("suzuki","vovlvo","bmw","toyoto");
echo $cars[0]." and ".$cars[1]." are swedish
cars";
?>
</body></html>

suzuki and vovlvo are swedish cars

2. Associative Array

In this case id key is associated with a value associative array. W can
use the value s as keys and assigns values to them.

$args=array(“peter” 32, “Rose”30, “Joe”34);
In this example we use an array to assign ages to different persons.
Example

<?php
$ages[‘Peter’]=”32”;
$ages[‘Rose’]=”30”;
$ages[‘Joe’]=”34”;
echo “Peter is ”. ”$ages[‘Peter’]. “Years old”;
?>

3. Multi-dimensional Array
In this case each element in the main array can also be an array and

each element in the sub array can be array and soon.
Example Output

<html><body>
<?php
$cars = array
 (
 array("Volvo",22,18),
 array("BMW",15,13),
 array("Saab",5,2),
 array("Land Rover",17,15)
);
echo $cars[0][0].": In stock:

Volvo: In stock: 22, sold: 18.

BMW: In stock: 15, sold: 13.

Saab: In stock: 5, sold: 2.

Land Rover: In stock: 17, sold: 15.

".$cars[0][1].", sold:
".$cars[0][2].".
";
echo $cars[1][0].": In stock:
".$cars[1][1].", sold:
".$cars[1][2].".
";
echo $cars[2][0].": In stock:
".$cars[2][1].", sold:
".$cars[2][2].".
";
echo $cars[3][0].": In stock:
".$cars[3][1].", sold:
".$cars[3][2].".
";
?>
</body></html>

Some of Array Functions
The array functions allow us to access and manipulate arrays.

 array() – Creates an array
 array_change_key_case — Changes the case of all keys in an array
 array_chunk — Split an array into chunks
 array_column — Return the values from a single column in the input array
 array_count_values — Counts all the values of an array
 array_fill_keys — Fill an array with values, specifying keys
 array_fill — Fill an array with values
 array_flip — Exchanges all keys with their associated values in an array
 array_intersect — Computes the intersection of arrays
 array_key_exists — Checks if the given key or index exists in the array
 array_key_first — Gets the first key of an array
 array_key_last — Gets the last key of an array
 array_keys — Return all the keys or a subset of the keys of an array
 array_merge — Merge one or more arrays
 array_multisort — Sort multiple or multi-dimensional arrays
 array_pop — Pop the element off the end of array
 array_push — Push one or more elements onto the end of array
 array_rand — Pick one or more random keys out of an array
 array_replace — Replaces elements from passed arrays into the first array
 array_reverse — Return an array with elements in reverse order
 array_search — Searches the array for a given value and returns the first

corresponding key if successful
 array_shift — Shift an element off the beginning of array
 array_sum — Calculate the sum of values in an array
 array_unique — Removes duplicate values from an array
 array_values — Return all the values of an array
 arsort — Sort an array in reverse order and maintain index association
 asort — Sort an array and maintain index association
 count — Count all elements in an array, or something in an object
 current — Return the current element in an array
 key — Fetch a key from an array

 krsort — Sort an array by key in reverse order
 ksort — Sort an array by key
 range — Create an array containing a range of elements
 rsort — Sort an array in reverse order
 shuffle — Shuffle an array
 sort — Sort an array

List()

Assign variables as if they were an array. The list() function is used to
assign values to a list of variables in one operation. This function only
works on numerical arrays.

Syntax
list(var1,var2...)

Example Output
<?php
$my_array = array("Dog","Cat","Horse");

list($a, , $c) = $my_array;
echo "Here I only use the $a and $c
variables.";
?>

Here I only use the Dog and Horse
variables.

Some of Examples

Examples Output

<?php
$people
= array("Peter", "Joe", "Glenn", "Cleveland");
echo pos($people) . "
";
?>

Peter

<?php
$cars=array("Volvo","BMW","Toyota");
sort($cars);

$clength=count($cars);
for($x=0;$x<$clength;$x++)
 {
 echo $cars[$x];
 echo "
";
 }
?>

BMW
Toyota
Volvo

<?php 45

$a=array(5,15,25);
echo array_sum($a);
?>
<?php
$a=array("a"=>"red","b"=>"green","c"=>"red");
print_r(array_unique($a));
?>

Array ([a] => red [b] => green)

<?php
$cars=array("Volvo","BMW","Toyota");
echo count($cars);
?>

3

<?php
$a=array("Name"=>"Peter","Age"=>"41","Cou
ntry"=>"USA");
print_r(array_values($a));
?>

Array ([0] => Peter [1] => 41 [2] =>
USA)

<?php
$my_array =
array("red","green","blue","yellow","purple");
shuffle($my_array);
print_r($my_array);
?>

<p>Refresh the page to see how shuffle()
randomizes the order of the elements in the
array.</p>

Array ([0] => green [1] => purple
[2] => red [3] => blue [4] => yellow)
Refresh the page to see how
shuffle() randomizes the order of
the elements in the array.

PHP ADVANCED FUNCTIONS:
 PHP contains three advanced functions:
1. HEADER

PHP headers are bits of information that are sent to a computer
before anything else like a webpage is sent. When we view a website in a
browser, we will never see these headers. They come before the webpage and all
the browser will display is the content of the webpage. The header must come
before any of our other content on the page.

header(‘Location:’)

One header is the location header. It is the URL has of the page we are
requesting. It tells the browser where to find the page that we are looking for.
This is useful for when we have an old page that people may have bookmarked,
we can send them to the new location automatically when they try to load the
page.
Example

<?php
header('Location://www.google.com');
exit;
?>
<html> <body>

<?php
echo "Hello";
?>
</body> </html>

header(‘Refresh:’)
 Redirecting a user to another page right away is fine and all, but what if we
wanted to give the user a little bit of time to see a message or something before
we sent them elsewhere.
Example:

 <?php
header('Refresh:10; url=http://www.google.com');
echo "you will be redirect to GOOGLE in 9 seconds";
exit;
?>
<html><body>
<?php
echo "Hello";
?>
</body></html>

header(‘Content-Type:’)
With a PHP Content-Type header, we can change how we want the browser to

read the page. For the normal page the Content-type is text/html. But we could
change that in the header to be text/plain and the browser will display the
source code of our site. We can also use it to display PDF’s and other
documents.
Example

<?php
header('Content-Type: text/plain');
echo "you may change text/plain as html or pdf";
exit;
?>
<html> <body>
<?php
echo "Hello";
?>
</body> </html>

header(‘Content-Disposition:’)
 With Content-Disposition we tell the browser how to handle the document.
If we have a PDF that we want user to download, we can use this Content-
Disposition to make the browser display a save dialogue box. We must pt the
filename so that it can be downloaded.
Example:

<?php
header('Content-Disposition: attachment; filename="example.pdf"');
echo "The file example.pdf were downloading... ";

exit;
?>
<html> <body>
<?php
echo "Hello";
?>
</body> </html>

header(‘Cache-Control:’)
 When we view webpages, our browser might be storing them in cache
somewhere to reference later. When we come back to the site, it might load
faster. The problem is that if we have a site that constantly updates, like a news
site we don’t want it to be cached. Otherwise there is no recent news updates. If
the does not get cached we specify no-cache and then tell the browser to
revalidate the page with the original server.
Exmple:

<?php
header('Cache-Control: no-cache, must-revalidate');
echo "This page not cached ";
exit;
?>
<html> <body>
<?php
echo "Hello";
?>
</body> </html>

header(“Expires:”)

Using Expires header we can set the date for when the page cache is to expire.
To make sure that the page is never cached. We can set date in the past so that
it will always expire and must reload with new content.
Example:

<?php
header('Expires: Sat, 26 Sep 2016 05:00:00 GMT');
echo "This page never cached ";
exit;
?>
<html> <body>
<?php
echo "Hello";
?>
</body> </html>

2. SESSION

A session is a way to store information (in variables) to be used
across multiple pages. Unlike a cookie, the information is not stored on the users
computer. When we work with an application, we open it, do some changes, and
then we close it. This is much like a Session. The computer knows who we are. It

knows when we start the application and when we end. But on the internet there
is one problem: the web server does not know who we are or what we do,
because the HTTP address doesn't maintain state.

Session variables solve this problem by storing user information to be

used across multiple pages (e.g. username, favorite color, etc). By default,
session variables last until the user closes the browser. So; Session variables
hold information about one single user, and are available to all pages in one
application. If we need a permanent storage, we may want to store the data in
a database. A session is started with the session_start() function. This function
must be the very first thing in our document. Before any HTML tags, A Session
variables are set with the PHP global variable: $_SESSION.

A Session variables hold information about one single user and are

available to all pages in one application. The PHP allows storing information on
the server for later use such as user name, shopping items etc. however session
information is temporarily and will be deleted after the user has left the website.
Session works by creating a unique id (UID) for each visitor and store variable
based on this new id, which is stored in cookie and is used to reference the
session file on the server. As such the user has no access to the content of the
session file there by providing secure alternatives to cookies. Now, let's create a
new page called "demo_session1.php". In this page, we start a new PHP session
and set some session variables:

Example Output
<?php
session_start();
?>
<html><body>
<?php
$_SESSION["favcolor"] = "green";
$_SESSION["favanimal"] = "cat";
echo "Session variables are set.";
?>
</body></html>

Session variables are set.

Making a PHP Session Variable

Next, we create another page called "demo_session2.php". From this
page, we will access the session information we set on the first page
("demo_session1.php"). Notice that session variables are not passed individually
to each new page, instead they are retrieved from the session we open at the
beginning of each page (session_start()). Also notice that all session variable
values are stored in the global $_SESSION variable:

Example Output
<?php
session_start();
?>
<html><body>
<?php

Favorite color is green.
Favorite animal is cat.

echo "Favorite color is
" . $_SESSION["favcolor"] . ".
";
echo "Favorite animal is
" . $_SESSION["favanimal"] . ".";
?>
</body></html>
Note: Most sessions set a user-key on the user's computer that looks something
like this: 765487cf34ert8dede5a562e4f3a7e12. Then, when a session is opened
on another page, it scans the computer for a user-key. If there is a match, it
accesses that session, if not, it starts a new session.

Modify a PHP Session Variable
To change a session variable, just overwrite it:

Example Output
<?php
session_start();
?>
<html><body>
<?php
$_SESSION["favcolor"] = "yellow";
print_r($_SESSION);
?>
</body></html>

Array ([favcolor] => yellow [favanimal]
=> cat)

Destroy a PHP Session
To remove all global session variables and destroy the session, use
session_unset() and session_destroy():

Example Output
<?php
session_start();
?>
<html><body>
<?php
echo "All session variables are now
removed, and the session is
destroyed."
?>
</body></html>

All session variables are now removed,
and the session is destroyed.

3. COOKIE

A cookie is often used to identify a user. A cookie is a small file that
the server embeds on the user's computer. Each time the same computer
requests a page with a browser, it will send the cookie too. With PHP, we can
both create and retrieve cookie values. A cookie is created with the setcookie()
function. The isset() function is used to find out if a cookie has been set or not.
It enables us to maintain the state of a users visit to a website. So that we can
write their movement through the site or to store the information such as user
name, password and address etc.

After they have entered it one page so that they have to keep

reentering it on different pages. Cookies are sent by a script or web server to the
web browser. The browser is responsible for sending the cookies through http
request headers to all successive pages that belong to the web application.
Cookies are limited in size and quantity (4KB each and 20 cookies per domain).
A cookie often identifies a user. It is a small file that server enables on the user’s
computer. Each time the same computer request a page with a browser, it will
set the cookie too.

Syntax

setcookie(name, value, expire, path, domain, secure);

Only the name parameter is required. All other parameters are optional.
Name: - the name of the cookie
Value:- the value of the cookie (this value stored in the client computer. So don’t
store sensitive information)
Expire:- the time the cookie expire
Path:- the path on the server in which the cookie will be available on.
Domain:- the domain for which the cookie is available
Secure:- the cookie should only be transmitted over a secure http connection

Example:

<?php
setcookie("user","Bill Gates", time(63400));
echo "cookie would set";
?>

Create/Retrieve a Cookie
We retrieve the value of the cookie "user", we also use the isset()

function to find out if the cookie is set:
Example
<?php
echo $_cookie[‘user’];
print_r($cookie);
?>

Note: The value of the cookie is automatically URLencoded when sending the
cookie, and automatically decoded when received (to prevent URL encoding, use
setrawcookie() instead).

Modify a Cookie Value
To modify a cookie, just set (again) the cookie using the setcookie() function:

Example Output
<?php
$cookie_name = "user";
$cookie_value = "Alex Porter";
setcookie($cookie_name, $cookie_value,
time() + (86400 * 30), "/");

First Output
Cookie named ‘user’ is not set

Note: You might have to reload the
page to see the new value of the cookie.

?>
<html><body>
<?php
if(!isset($_COOKIE[$cookie_name])) {
 echo "Cookie named '" .
$cookie_name . "' is not set!";
} else {
 echo "Cookie '" . $cookie_name . "' is
set!
";
 echo "Value is:
" . $_COOKIE[$cookie_name];
}
?>
<p>Note: You might
have to reload the page to see the new
value of the cookie.</p>
</body></html>

Second Output
Cookie 'user' is set!
Value is: Alex Porter

Note: You might have to reload the
page to see the new value of the cookie.

Delete a Cookie
To delete a cookie, use the setcookie() function with an expiration date in the
past:

Example Output
<?php
setcookie("user", "", time() - 3600);
?>
<html><body>
<?php
echo "Cookie 'user' is deleted.";
?>
</body></html>

Cookie 'user' is deleted.

Check if Cookies are Enabled

The following example creates a small script that checks whether
cookies are enabled. First, try to create a test cookie with the setcookie()
function, then count the $_COOKIE array variable:

Example Output
<?php
setcookie("test_cookie", "test", time()
+ 3600, '/');
?>
<html><body><?php
if(count($_COOKIE) > 0) {
 echo "Cookies are enabled.";
} else {
 echo "Cookies are disabled.";
}
?></body></html>

Cookies are enabled.

