

MODULE III
INTRODUCTION TO PHP

PHP stands for Personal Home Page. Another stands is PHP Hypertext
Pre-processor. PHP is popular general purpose server side scripting language
that is especially suited to web development. In 1994 Rasmus Lerdorf designed
PHP and developed by Zend Technologies. PHP files can contain text, HTML,
CSS, JavaScript, and PHP code. The file extensions are .php, .phtml, .php3,
.php4, .php5, .php7 or .phps.

PHP allows developers to build logic into the creation of webpage

content and handle data returned from a web browser. PHP also contents a
number of extensions that make it easy to interact with databases extracting
data to be information entered by a website visitor back into the database.

PHP consists of Scripting Language and Interpreter. Scripts are

embedded in to the HTML documents that are served by the web server.
Interpreter takes the form of module that integrates in to the web server and
then converting the script in to the commands. The computer then executes to
achieve the results, defined on the scripts by the web developer.

In PHP, all keywords (e.g. if, else, while, echo, etc.), classes, functions, and user-

defined functions are NOT case-sensitive. That is echo, ECHO and Echo are

equal. But all variable names are case-sensitive. That is the variables $color,

$COLOR, and $coLOR are treated as three different variables.

Features

 PHP scripts are executed on the server
 PHP can generate dynamic page content
 PHP is free to download and use
 PHP can create, open, read, write, delete, and close files on the server
 PHP can collect form data
 PHP can send and receive cookies
 PHP can add, delete, modify data in our database
 PHP can be used to control user-access
 PHP can encrypt data
 PHP runs on various platforms (Windows, Linux, Unix, Mac OS X, etc.)
 PHP is compatible with almost all servers used today (Apache, IIS, etc.)
 PHP supports a wide range of databases
 PHP is easy to learn and runs efficiently on the server side

Basic PHP Syntax

A PHP script is executed on the server, and the plain HTML result is
sent back to the browser. A PHP script can be placed anywhere in the document.
A PHP script starts with <?php and ends with ?>: A PHP file normally contains
HTML tags, and some PHP scripting code. Each code line in PHP must end with
a semicolon. The default file extension for PHP files is ".php".

<?php
// PHP code goes here
?>

Example:

<html> <head>
<title> My First PHP Page
</title> </head>
<body bgcolor=”red”>

<?php
 echo"Welcome To PHP";
?>

<?php
 phpinfo();
?>

<?php
 $a=10;
 $b=5;
 $c=$a+$b;
 echo $c,"
";
?>

<?php
 echo "",date("d/m/y"),"";
?>

</body></html>

SERVER SIDE SCRIPTING

Server side web scripting is mostly about connecting websites to
backend servers, processing data and controlling the behavior of higher layers
such as html. These enable two way communication- Clients to Server and
Server to Client. Server-side scripts are run on the server. This reduces the
amount of bugs or compatibility issues since the code is run on one server using
one language and hosting software. Server-side programming can also be
encrypted when users send form variables, protecting users against any hack
attempts. Some examples of server-side programming languages are C#, VB.NET,
and PHP.

Advantages of Server side Scripting

1. Ensure high level security to the source code
2. It does not require the user to download plug-in like Java or Flash (client-

side scripting).
3. We can create a single website template for the entire website. Each new

dynamic page we create will automatically use it.

4. We can configure a site to use a content management system, which
simplifies the editing, publishing, adding of images, and creation of web
applications. Many apps are often available in the form of extensions.

5. Load times are generally faster than client-side scripting.
6. Our scripts are hidden from view. Users only see the HTML output, even

when they view the source.
7. The site can use a content management system which makes editing

simpler.
8. Generally quicker to load than client-side scripting
9. User is able to include external files to save coding.

WEB SERVER SOFTWARE

A Web server is a program that uses HTTP (Hypertext Transfer
Protocol) to serve the files that form Web pages to users, in response to their
requests, which are forwarded by their computers' HTTP clients. Dedicated
computers and appliances may be referred to as Web servers as well. Leading
Web servers include Apache (the most widely-installed Web server), Microsoft's
Internet Information Server (IIS) and nginX (pronounced engine X) from NGNIX.
Other Web servers include Novell's NetWare server, Google Web Server (GWS)
and IBM's family of Domino servers.

When we create a website, it must be published on a server computer

that is connected to the internet. There are many different types of web server
software. The operating system determines the type of web server software that
can be run. The web server is responsible for responding to http request for
WebPages depending upon the type of website that we have created. The web
server software might also need to make request to application system,
programming scripts and databases. When the sever let we share information
over the internet or through internet or extranet.

Role of Web Servers

The primary function of a web server is to store, process and
deliver web pages to clients. The communication between client and server takes
place using the Hypertext Transfer Protocol (HTTP).

Popular Web Servers
1. Apache HTP Server
2. Apache TomCat
3. Microsoft IIS
4. Sun Java Web Server
5. Ngnix Web Server
6. Klone
7. Oracle Web Server
8. Zeus
9. GWS Google
10. IBM Lotus

Apache Web Server
 It is the most popular web server in the world developed by Apache
software foundation. Apache web server is an open source software and can be
install all operating system include UNIX, LINUX, WINDOWS, MAC OS and more.
About 60% of web server’s machines are run in the Apache web server.

Advantages of Apache

 Easy implementation of latest protocol
 It is customized (can be change by user)
 It follows modular architecture (can use or make by modules)
 Remote administration is very convenient
 Efficient
 Optimized
 Less system recourses needed
 Portable
 Stability
 Reliability
 World wide support

WAPP Server
W --- Windows Component
A --- Apache
P ---PostgreSQL
P ---PHP

INCLUDING FILES
 We can include php file to another php files by include() function. For
example, if we have a set of defend variables that need to be referenced in every
page on our site. We could define once in a single php script. Then each of our
pages where we want the variable to appear, we can use and include statement
that defined the variables. When our script were passed, the parser inserts the
code from the include file into a webpage just as if we would types it there
ourselves. The final outputs then send to the browser.
Example

Address.php
<?php
echo "GEMS ASC
";
echo "Ramapuram
";
echo "Malappuram
";
?>

Info.php

<?php
phpinfo();
?>

Welcome.php
<?php
echo "Welcome to the world of
PHP
";
include("address.php");
include("info.php");
?>

GEMS ASC
Ramapuram
Malappuram

Information about
PHP

Welcome to the world of PHP
GEMS ASC
Ramapuram

Malappuram

COMMENTS
A comment in PHP code is a line that is not read/executed as part of

the program. Its only purpose is to be read by someone who is looking at the
code. Comments can be used to:

 Let others understand what we are doing
 Remind ourselves of what we did - Most programmers have experienced

coming back to their own work a year or two later and having to re-figure
out what they did. Comments can remind we of what we were thinking
when we wrote the code

PHP supports several ways of commenting:

1. Single line Comment
This uses the symbols // and #

2. Multiline Comment
/*…………..*/

DATA TYPES

Data Types defines the type of data a variable can store. PHP allows
eight different types of data types. The first five are called simple data types and
the last three are compound data types:

1. String

Hold letters or any alphabets, even numbers are included. These are written
within double quotes during declaration. The strings can also be written within
single quotes but it will be treated differently while printing variables.

Example Output

<?php
$x = "Hello world!";
$y = 'Hello world!';
echo $x;
echo "
";
echo $y;
?>

Hello world!
Hello world!

2. Float
It can hold numbers containing fractional or decimal part including positive and
negative numbers. By default, the variables add a minimum number of decimal
places.

Example Output

<?php
$val1 = 50.85;
$val2 = 654.26;
$sum = $val1 + $val2;
echo $sum;
?>

705.11

3. Integers
An integer data type is a non-decimal number between -2,147,483,648 and
2,147,483,647.

Rules for integers:

 An integer must have at least one digit
 An integer must not have a decimal point
 An integer can be either positive or negative
 Integers can be specified in three formats: decimal (10-based), hexadecimal

(16-based - prefixed with 0x) or octal (8-based - prefixed with 0)

Example Output

<?php
// decimal base integers
$deci1 = 50;
$deci2 = 654;
// octal base integers
$octal1 = 07;
// hexadecimal base integers
$octal = 0x45;
$sum = $deci1 + $deci2;
echo $sum;
?>

704

4. Boolean

Hold only two values, either TRUE or FALSE. Successful events will return true
and unsuccessful events return false. NULL type values are also treated as false
in Boolean. Apart from NULL, 0 is also considering as false in boolean. If a string
is empty then it is also considered as false in boolean data type.

Example Output

<?php
if(TRUE)
 echo "This condition is TRUE";
if(FALSE)
 echo "This condition is not TRUE";

// Assign the value TRUE to a variable
$show_error = true; var_dump($show_error);
?>

This condition is TRUE

bool(true)

5. NULL
The special NULL value is used to represent empty variables in PHP. A variable of
type NULL is a variable without any data. NULL is the only possible value of type
null. If a variable is created without a value, it is automatically assigned a value
of NULL. Variables can also be emptied by setting the value to NULL:

Example Output

<!DOCTYPE html>
<html><body>
<?php
$x = "Hello world!";
$x = null;
var_dump($x);
?>
</body></html>

NULL

6. Arrays
Array is a compound data-type which can store multiple values of same data
type. An array is a variable that can hold more than one value at a time. It is
useful to aggregate a series of related items together, for example a set of country
or city names. An array is formally defined as an indexed collection of data
values. Each index (also known as the key) of an array is unique and references
a corresponding value.

Example Output

<?php
 $cars = array("Volvo","BMW","Toyota");
var_dump($cars);

$intArray = array(10, 20 , 30);
echo "First Element: $intArray[0]\n";
echo "Second Element: $intArray[1]\n";
echo "Third Element: $intArray[2]\n";
?>

array(3) { [0]=> string(5) "Volvo" [1]=>
string(3) "BMW" [2]=> string(6) "Toyota"
}

First Element: 10
Second Element: 20
Third Element: 30

7. Object

An object is a data type that not only allows storing data but also information on,
how to process that data. An object is a specific instance of a class which serve
as templates for objects. Objects are created based on this template via the new
keyword. Every object has properties and methods corresponding to those of its
parent class. Every object instance is completely independent, with its own
properties and methods, and can thus be manipulated independently of other
objects of the same class. Objects are defined as instances of user defined
classes that can hold both values and functions.

Example Output

<?php
class Car {
 function Car() {
 $this->model = "BMW";
 } }
// create an object
$vehiclw = new Car();
// show object properties
echo $vehicle->model;
?>

BMW

8. Resources
A resource is a special variable, holding a reference to an external resource.
Resource variables typically hold special handlers to opened files and database
connections. It is the storing of a reference to functions and resources external to
PHP. A common example of using the resource data type is a database call.

VARIABLES AND SCOPE
The main way to store information in the middle of the PHP program is by using
a Variable. It is a named storage location capable of containing data that can be
modified during program execution. A variable starts with the $ sign, followed by
the name of the variable. A variable can have a short name (like x and y) or a
more descriptive name (age, carname, total_volume). PHP variables are Case-
Sensitive.

<?php
$txt = "Hello world!";
$x = 5;
$y = 10.5;
?>

After the execution of the statements above, the variable $txt will hold the
value Hello world!, the variable $x will hold the value 5, and the variable $y will
hold the value 10.5.
<?php
$txt = "Balan";
echo "I love $txt!";
?>

<?php
$txt = " Balan";
echo "I love " . $txt . "!";
?>

<?php
$x = 5;
$y = 4;
echo $x + $y;
?>

I love Balan I love Balan 9

Rules for naming a Variable

1) A variable starts with the $ sign, followed by the name of the variable
2) A variable name must start with a letter or the underscore character
3) A variable name cannot start with a number
4) A variable name can only contain alpha-numeric characters and

underscores (A-z, 0-9, and _)
5) Variable names are case-sensitive ($age and $AGE are two different

variables)

Scope of the Variables

 In PHP, variables can be declared anywhere in the script. The scope
of a variable is the part of the script where the variable can be referenced/used.
PHP has three different variable scopes:

 local
 global
 static

A variable declared outside a function has a GLOBAL SCOPE and can only be
accessed outside a function. A variable declared within a function has a LOCAL
SCOPE and can only be accessed within that function. Normally, when a
function is completed/executed, all of its variables are deleted. However,

sometimes we want a local variable NOT to be deleted. We need it for a further
job. To do this, use the static keyword when we first declare the variable:

Example Output

<html><body>
<h3> Handling Scope of the
Variable</h3>
<?php
$amount=500;
echo "The value is : ", $amount;
scope();
echo "
The value still is : ", $amount;
function scope()
{
 $amount=800;
 echo "
The value in the function is :
", $amount;
}
?>
</body></html>

Handling Scope of the Variable

The value is : 500
The value in the function is : 800
The value still is : 500

ECHO AND PRINT

 Both are use to display output data to the screen
 Echo has no return value
 Print has return value of 1
 Print can be used in expression
 Echo can take multiple parameters
 Print can take only one parameter
 Echo is faster than Print
 Echo can be used with or without parenthesis

OPERATORS

Operators are used to perform operations on variables and values.
PHP divides the operators in the following groups:

 Arithmetic operators
 Assignment operators
 Comparison operators
 Increment/Decrement operators
 Logical operators
 String operators
 Array operators

Arithmetic Operators

The PHP arithmetic operators are used with numeric values to
perform common arithmetical operations, such as addition, subtraction,
multiplication etc.
Operator Name Example Result

+ Addition $x + $y Sum of $x and $y
- Subtraction $x - $y Difference of $x and $y

* Multiplication $x * $y Product of $x and $y
/ Division $x / $y Quotient of $x and $y
% Modulus $x % $y Remainder of $x divided by $y
** Exponentiation $x ** $y Result of raising $x to the $y'th power

Example Output

<html><body>
<?php
echo "x=10
";
echo "y=6
";
$x = 10;
$y = 6;
echo "Addition is: ",$x + $y;
echo "
 Subtraction is: ",$x - $y;
echo "
 Multiplication is: ",$x * $y;
echo "
 Division is: ",$x / $y;
echo "
 Modulud is: ",$x%$y;
?>
</body></html>

x=10
y=6
Addition is: 16
Subtraction is: 4
Multiplication is: 60
Division is: 1.6666666666667
Modulud is: 4

Assignment Operators

The PHP assignment operators are used with numeric values to write
a value to a variable. The basic assignment operator in PHP is "=". It means that
the left operand gets set to the value of the assignment expression on the right.
Assignment Same As… Description

x = y x = y
The left operand gets set to the value of the
expression on the right

x += y x = x + y Addition
x -= y x = x - y Subtraction
x *= y x = x * y Multiplication
x /= y x = x / y Division
x %= y x = x % y Modulus

Example Output

<html> <body>
<?php
echo "x=20
";
echo "y=100
";
$x = 20;
$y = 15;
echo "Assignment is: ",$x;
echo "
 Addition is: ",$x += 100;
echo "
 Subtraction is: ",$x -= 50;
echo "
 Multiplication is: ",$y *= 30;
echo "
 Division is: ",$y /= 40;
echo "
 Modulud is: ",$x %= 40;
?>
</body> </html>

x=20
y=15
Assignment is: 20
Addition is: 120
Subtraction is: 70
Multiplication is: 450
Division is: 11.25
Modulud is: 30

Comparison Operators

The PHP comparison operators are used to compare two values

(number or string): The output of comparison operators are True or False.

Operator Name Example Result

== Equal $x == $y Returns true if $x is equal to $y

=== Identical $x === $y
Returns true if $x is equal to $y,
and they are of the same type

!= Not Equal $x != $y Returns true if $x is not equal to $y
<> Not Equal $x <> $y Returns true if $x is not equal to $y

!== Not Identical $x !== $y
Returns true if $x is not equal to $y,
or they are not of the same type

< Less Than $x < $y Returns true if $x is less than $y
> Greater Than $x > $y Returns true if $x is greater than $y

<=
Less Than or
Equal To

$x <= $y
Returns true if $x is less than or
equal to $y

>=
Greater Than
or Equal To

$x >= $y
Returns true if $x is greater than or
equal to $y

Increment / Decrement Operators

he PHP increment operators are used to increment a variable's value.
The PHP decrement operators are used to decrement a variable's value.

Operator Name Description

++$x Pre-increment Increments $x by one, then returns $x
$x++ Post-increment Returns $x, then increments $x by one
--$x Pre-decrement Decrements $x by one, then returns $x
$x-- Post-decrement Returns $x, then decrements $x by one

Example Output

<html> <body>
<?php
echo "p = 35
";
echo "x = 30
";
echo "y = 25
";
echo "z = 10
";
$p = 35;
$x = 30;
$y = 25;
$z = 10;
echo "Pre-increment is: ",++$p;
echo "
 post-increment is: ",$x++;
echo "
 Pre-decrement is: ",--$y;
echo "
 Post-decrement is: ",$z--;
?>
</body> </html>

p = 35
x = 30
y = 25
z = 10
Pre-increment is: 36
post-increment is: 30
Pre-decrement is: 24
Post-decrement is: 10

Logical Operators
The PHP logical operators are used to combine conditional statements.

Operator Name Example Result

and And $x and $y True if both $x and $y are true
or Or $x or $y True if either $x or $y is true
xor Xor $x xor $y True if either $x or $y is true, but not both
&& And $x && $y True if both $x and $y are true
|| Or $x || $y True if either $x or $y is true
! Not !$x True if $x is not true

Example Output

<html> <body>
<?php
$x = 100;
$y = 50;
if ($x == 100 and $y == 50) {
 echo "Hello world!
";
}
if ($x == 100 or $y == 80) {
 echo "Hello world!
";
}
if ($x == 100 xor $y == 80) {
 echo "Hello world!
";
}
if ($x == 100 && $y == 50) {
 echo "Hello world!
";
}
if ($x == 100 || $y == 80) {
 echo "Hello world!
";
}
if ($x !== 90) {
 echo "Hello world!";
}
?>
</body> </html>

Hello world!
Good Morning
Have a Nice Day!
See You
Are you OK?
Then Bye...

String Operators
PHP has two operators that are specially designed for strings.

Operator Name Example Result

. Concatenation $txt1 . $txt2 Concatenation of $txt1 and $txt2
.= Concatenation

assignment
$txt1 .= $txt2 Appends $txt2 to $txt1

Example Output

<html> <body>
<?php
$txt1 = "Hello";
$txt2 = " world!";

Hello world!
Hello world!

echo $txt1 . $txt2."
";
$txt1 .= $txt2;
echo $txt1;
?>
</body> </html>

Array Operators

The PHP array operators are used to compare arrays.

Operator Name Example Result

+ Union $x + $y Union of $x and $y

== Equality $x == $y
Returns true if $x and $y have the same
key/value pairs

=== Identity $x === $y
Returns true if $x and $y have the same
key/value pairs in the same order and
of the same types

!= Inequality $x != $y Returns true if $x is not equal to $y
<> Inequality $x <> $y Returns true if $x is not equal to $y

!==
Non-
identity

$x !== $y
Returns true if $x is not identical to $y

CONDITIONAL OPERATORS

Conditional statements are used to perform different actions based
on different conditions. When we write code, we want to perform different actions
for different conditions. We can use conditional statements in our code to do
this. In PHP we have the following conditional statements:

 if statement - executes some code if one condition is true
 if...else statement - executes some code if a condition is true and

another code if that condition is false
 if...elseif....else statement - executes different codes for more than two

conditions
 switch statement - selects one of many blocks of code to be executed

The if Statement
The if statement executes some code if one condition is true.
Syntax

if (condition) {
 code to be executed if condition is true;
}
The example below will output "Have a good day!" if the current time (HOUR) is
less than 20:

Example Output

<html><body>
<?php
echo "y=13
";
$y = 13;

y=13
It is a Positive Number

if ($y > 0)
{
 echo "It is a Positive Number";
}
?>
</body></html>

The if...else Statement

The if....else statement executes some code if a condition is true and
another code if that condition is false.
Syntax

if (condition) {
 code to be executed if condition is true;
} else {
 code to be executed if condition is false;
}

The example below will output "Have a good day!" if the current time is less than
20, and "Have a good night!" otherwise:

Example Output

<html><body>
<?php
echo "x=8
";
echo "y=21
";
$x = 8;
$y = 21;

if ($y > $x)
{
 echo "
 The No. 21 is Large";
}
else
{
 echo "
The No. 8 is Large";
}
?>
</body></html>

x=8
y=21

The No. 21 is Large

The if...elseif....else Statement

The if....elseif...else statement executes different codes for more than two
conditions.
Syntax

if (condition) {
 code to be executed if this condition is true;
} elseif (condition) {
 code to be executed if this condition is true;
} else {
 code to be executed if all conditions are false;
}

The example below will output "Have a good morning!" if the current time is less
than 10, and "Have a good day!" if the current time is less than 20. Otherwise it
will output "Have a good night!":

Example Output

<html><body>
<?php
echo "x=27
";
echo "y=7
";
echo "zy=17
";
$x = 27;
$y = 7;
$z = 17;

if ($x > $y)
{
 if ($x > $z)
 {
 echo "
The Largest is:".$x;
 }
 else
 {
 echo "
 The Largest is:".$z;
 }
}
elseif ($y > $z)
{
 echo "
 The Largest is:".$y;
}
else
{
 echo "
 The Largest is:".$z;
}
?>
</body></html>

x=27
y=7
zy=17

The Largest is:27

BRANCHING STATEMENTS
 Switch Statement
 Continue Statement
 Break Statement

Switch Statement

The switch statement is used to perform different actions based on
different conditions. Use the switch statement to select one of many blocks of
code to be executed.
Syntax

switch (n) {
 case label1:
 code to be executed if n=label1;
 break;

 case label2:
 code to be executed if n=label2;
 break;
 case label3:
 code to be executed if n=label3;
 break;
 ...
 default:
 code to be executed if n is different from all labels;
}

This is how it works: First we have a single expression n (most often a
variable), that is evaluated once. The value of the expression is then compared
with the values for each case in the structure. If there is a match, the block of
code associated with that case is executed. Use break to prevent the code from
running into the next case automatically. The default statement is used if no
match is found.

Example Output

<html> <body>
<?php
$favcolor = "red";

switch ($favcolor) {
 case "blue":
 echo "Your favorite color is blue!";
 break;
 case "red":
 echo "Your favorite color is red!";
 break;
 case "green":
 echo "Your favorite color is
green!";
 break;
 default:
 echo "Your favorite color is neither
red, blue, nor green!";
}
?>
</body></html>

Your favorite color is red!

LOOPS

When we write code, we want the same block of code to run over and
over again in a row. Instead of adding several almost equal code-lines in a script,
we can use loops to perform a task like this.
In PHP, we have the following looping statements:

 while - loops through a block of code as long as the specified condition is
true

 do...while - loops through a block of code once, and then repeats the loop
as long as the specified condition is true

 for - loops through a block of code a specified number of times
 foreach - loops through a block of code for each element in an array

While Loop

The while loop executes a block of code as long as the specified condition is true.

Syntax

while (condition is true) {
 code to be executed;
}

The example below first sets a variable $x to 1 ($x = 1). Then, the while loop will
continue to run as long as $x is less than, or equal to 5 ($x <= 5). $x will
increase by 1 each time the loop runs ($x++):

Example Output

<html><body>
<?php
$x = 1;

while($x <= 5) {
 echo "The number is: $x
";
 $x++;
}
?>
</body> </html>

The number is: 1
The number is: 2
The number is: 3
The number is: 4
The number is: 5

Do...While Loop
The do...while loop will always execute the block of code once, it will then check
the condition, and repeat the loop while the specified condition is true.
Syntax

do {
 code to be executed;
} while (condition is true);

The example below first sets a variable $x to 1 ($x = 1). Then, the do while loop
will write some output, and then increment the variable $x with 1. Then the
condition is checked (is $x less than, or equal to 5?), and the loop will continue
to run as long as $x is less than, or equal to 5:

Example Output

<html><body>
<?php
$x = 1;

do {
 echo "The number is: $x
";
 $x++;
} while ($x <= 5);

The number is: 1
The number is: 2
The number is: 3
The number is: 4
The number is: 5

?>
</body> </html>

Notice that in a do while loop the condition is tested AFTER executing
the statements within the loop. This means that the do while loop would execute
its statements at least once, even if the condition is false the first time. The
example below sets the $x variable to 6, then it runs the loop, and then the
condition is checked:

Example Output

<html><body>
<?php
$x = 6;
do {
 echo "The number is: $x
";
 $x++;
} while ($x <= 5);
?>
</body> </html>

The number is: 6

For Loops
 PHP for loops execute a block of code a specified number of times. The for
loop is used when we know in advance how many times the script should run.

Syntax
for (init counter; test counter; increment counter) {
 code to be executed;
}

Parameters:

 init counter: Initialize the loop counter value
 test counter: Evaluated for each loop iteration. If it evaluates to TRUE, the

loop continues. If it evaluates to FALSE, the loop ends.
 increment counter: Increases the loop counter value

The example below displays the numbers from 0 to 10:

Example Output

<html><body>

<?php
 for ($x = 0; $x <= 10; $x++) {
 echo "The number is: $x
";
}
?>

</body> </html>

The number is: 0
The number is: 1
The number is: 2
The number is: 3
The number is: 4
The number is: 5
The number is: 6
The number is: 7
The number is: 8
The number is: 9
The number is: 10

foreach Loop
The foreach loop works only on arrays, and is used to loop through each
key/value pair in an array.
Syntax

foreach ($array as $value) {
 code to be executed;
}

For every loop iteration, the value of the current array element is assigned to
$value and the array pointer is moved by one, until it reaches the last array
element. The following example demonstrates a loop that will output the values
of the given array ($colors):

Example Output

<html><body>
<?php
$colors = array("red", "green", "blue",
"yellow");
foreach ($colors as $value) {
 echo "$value
";
}
?>
</body> </html>

red
green
blue
yellow

CONTINUE STATEMENT

The continue statement is used within looping structures to skip the
rest of the current loop iteration and continue execution at the condition
evaluation and then the beginning of the next iteration. Note: In PHP the
switch statement is considered a looping structure for the purposes of continue.

Sometimes a situation arises where we want to take the control to the

beginning of the loop (for example for, while, do while etc.) skipping the rest
statements inside the loop which have not yet been executed. The keyword
continue allow us to do this. When the keyword continue executed inside a loop
the control automatically passes to the beginning of loop. Continue is usually
associated with the if statement.

Example Output

<html><body>
<?php
for ($i = 0; $i < 5; $i++) {
 if ($i == 2)
 continue;
 echo $i."
";
}
?>
</body> </html>

0
1
3
4

BREAK STAEMENT
The keyword break ends execution of the current for, foreach, while,

do while or switch structure. When the keyword break executed inside a loop the
control automatically passes to the first statement outside the loop. A break is
usually associated with the if statements. The break ends execution of the
current for, foreach, while, do-while or switch structure. The break statement
accepts an optional numeric argument which tells it how many nested enclosing
structures are to be broken out of. The default value is 1, only the immediate
enclosing structure is broken out of.

Sometimes a situation arises where we want to exit from a loop

immediately without waiting to get back to the conditional statement. The
keyword break ends execution of the current for, foreach, while, do
while or switch structure. When the keyword break executed inside a loop the
control automatically passes to the first statement outside the loop. A break is
usually associated with the if.
Example :

In the following example we test the value of $sum, if it is greater
than 1500 the break statement terminate the execution of the code. As the echo
statement is first statement outside loop it will print the current value of $sum.

Example Example

<html><body>
<?php
for ($i = 0; $i < 8; $i++) {
 if ($i == 4)
 break;
 echo $i."
";
}
?>
</body> </html>

0
1
2
3

PHP FUNCTIONS
The real power of PHP comes from its functions; it has more than 1000 built-in
functions.

User Defined Functions

Besides the built-in PHP functions, we can create our own functions.
A function is a block of statements that can be used repeatedly in a program. It
will not execute immediately when a page loads. A function will be executed by a
call to the function. A user defined function declaration starts with the word
"function". A function name can start with a letter or underscore (not a number).
Function names are NOT case-sensitive. Give the function a name that reflects
what the function does!
Syntax

function functionName() {
 code to be executed;
}

In the example below, we create a function named "writeMsg()". The opening
curly brace ({) indicates the beginning of the function code and the closing curly
brace (}) indicates the end of the function. The function outputs "Hello world!".
To call the function, just write its name:

Example Output

<html><body>
<?php
function writeMsg() {
 echo "Hello world!";
}
writeMsg(); // call the function
?>
</body> </html>

Hello world!

Function Arguments

Information can be passed to functions through arguments. An
argument is just like a variable. Arguments are specified after the function
name, inside the parentheses. We can add as many arguments as we want, just
separate them with a comma. The following example has a function with one
argument ($fname). When the familyName() function is called, we also pass along
a name (e.g. Jani), and the name is used inside the function, which outputs
several different first names, but an equal last name:

Example Output

<html><body>
<?php
function familyName($fname) {
 echo "$fname Refsnes.
";
}
familyName("Jani");
familyName("Hege");
familyName("Stale");
familyName("Kai Jim");
familyName("Borge");
?>
</body> </html>

Jani Refsnes.
Hege Refsnes.
Stale Refsnes.
Kai Jim Refsnes.
Borge Refsnes.

The following example has a fuction with two arguments ($fname and $yaer);

Example Output

<html><body>
<?php
function familyName($fname, $year) {
 echo "$fname Refsnes. Born in $year

";
}
familyName("Hege","1975");
familyName("Stale","1978");
familyName("Kai Jim","1983");
?> </body> </html>

Hege Refsnes. Born in 1975
Stale Refsnes. Born in 1978
Kai Jim Refsnes. Born in 1983

Default Argument Value
The following example shows how to use a default parameter. If we call the
function setHeight() without arguments it takes the default value as argument:

Example Output

<html><body>
<?php
function setHeight($minheight = 50) {
 echo "The height is : $minheight

";
}
setHeight(350);
setHeight(); // will use the default
value of 50
setHeight(135);
setHeight(80);
?>
</body> </html>

The height is : 350
The height is : 50
The height is : 135
The height is : 80

Functions - Returning values

To let a function return a value, use the return statement:
Example Output

<html><body>
<?php
function sum($x, $y) {
 $z = $x + $y;
 return $z;
}
echo "5 + 10 = " . sum(5, 10) . "
";
echo "7 + 13 = " . sum(7, 13) . "
";
echo "2 + 4 = " . sum(2, 4);
?>
</body> </html>

5 + 10 = 15
7 + 13 = 20
2 + 4 = 6

