

pkandoubleos@gmail.com Page 1

PHP MODULE II

JAVASCRIPT: INTRODUCTION

JavaScript is a programming language that can be included on web
pages to make them more interactive. We can use it to check or modify the
contents of forms, change images, open new windows and write dynamic page
content. We can even use it with CSS to make DHTML (Dynamic HyperText
Markup Language). This allows we to make parts of our web pages appear or
disappear or move around on the page. JavaScripts only execute on the page(s)
that are on our browser window at any set time. When the user stops viewing
that page, any scripts that were running on it are immediately stopped. The
only exceptions are cookies or various client side storage APIs, which can be
used by many pages to store and pass information between them, even after
the pages have been closed.

Before we go any further, let me say; JavaScript has nothing to do

with Java. If we are honest, JavaScript, originally nicknamed LiveWire and
then LiveScript when it was created by Netscape, should in fact be called
ECMAscript as it was renamed when Netscape passed it to the ECMA for
standardization.

JavaScript is a client side, interpreted, object oriented, high level

scripting language, while Java is a client side, compiled, object oriented high
level language. Now after that mouthful, here's what it means.

 Client-side programming runs on the user's computer
 Programs are passed to the computer that the browser is on, and that

computer runs the script
 The problem:- the limit of control and problems with operating systems

and web browsers.
 JavaScript code is typically embedded in the HTML
 Used to make web pages more interactive
 It executes on our web browser window
 Interpreted and run by the client‘s browser
 The file stored using the extension .js
 JavaScript code is case sensitive
 White space between words and tabs are ignored
 Line breaks are ignored except within a statement
 JavaScript statements end with a semi- colon ;

CLIENT SIDE PROGRAMMING

Programs are passed to the computer that the browser is on, and that
computer runs them. The alternative is server side, where the program is run
on the server and only the results are passed to the computer that the browser
is on. Examples of this would be PHP, Perl, ASP, JSP etc

pkandoubleos@gmail.com Page 2

Client-side programming runs on the user's computer. The programs
are passed to the computer that the browser is on, and that computer runs the
script. But the problem is the limit of control and problems with operating
systems and web browsers.

SCRIPT TAG

The <SCRIPT> tag alerts a browser that JavaScript code follows. It is
typically embedded in the HTML. The <script> tag is used to define a client-
side script, such as a JavaScript. The <script> element either contains
scripting statements, or it points to an external script file through the src
attribute. Common uses for JavaScript are image manipulation, form
validation, and dynamic changes of content. The script tag has two purposes:

1. It identifies a block of script in the page.
2. It loads a script file.

Which it does depends on the presence of the src attribute. A </script> close
tag is required in either case.
A script tag can contain these attributes:

 src="url"
The src attribute is optional. If it is present, then its value is a url which

identifies a .js file. The loading and processing of the page pauses while the
browser fetches, compiles, and executes the file. The content between the
<script src="url"> and the </script>should be blank.

 language="javascript"
This attribute has been deprecated. It was used to select other programming

languages and specific versions of JavaScript. You don't need it. Don't use it.

 type="text/javascript"
This attribute is optional. Since Netscape 2, the default programming

language in all browsers has been JavaScript. In XHTML, this attribute is
required and unnecessary. In HTML, it is better to leave it out. The browser
knows what to do.

<SCRIPT language = "JavaScript">
statements

</SCRIPT>

Example
<html><head>

<SCRIPT type="text/javascript">
alert("Welcome to the script tag test page.");
</SCRIPT>
</head> <body>
<h2>Good Morning</h2>
</body> </html>

pkandoubleos@gmail.com Page 3

 Save the changes by choosing Save from the File menu.
 Then Refresh the browser by clicking the Refresh or Reload button.

JAVASCRIPT COMMENTS

Comments can be added to explain the JavaScript, or to make the
code more readable. Single line comments start with //. The following example
uses single line comments to explain the code:
Example

<script type="text/javascript">

// Write a heading
document.write("<h1>This is a heading</h1>");
// Write two paragraphs:
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");
</script>

JavaScript Multi-Line Comments
Multi line comments start with /* and end with */. The following example

uses a multi line comment to explain the code:
Example

<script type="text/javascript">
/*

The code below will write
one heading and two paragraphs
*/
document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");

</script>
Using Comments at the End of a Line

In the following example the comment is placed at the end of a code line:
Example

<script type="text/javascript">
document.write("Hello"); // Write "Hello"

document.write(" Dolly!"); // Write " Dolly!"
</script>

VARIABLES

Variables are used to store data. A variable's value can change during
the execution of a script. We can refer to a variable by its name to display or
change its value. The rules for JavaScript variable names:

 Variable names are case sensitive (y and Y are two different variables)
 Variable names must begin with a letter, the $ character, or the

underscore character
 Because JavaScript is case-sensitive, variable names are case-sensitive.

pkandoubleos@gmail.com Page 4

Declaring JavaScript Variables
Creating variables in JavaScript is most often referred to as "declaring"

variables. We declare JavaScript variables with the var keyword:
var x;

var carname;
After the declaration shown above, the variables are empty (they have no values
yet). However, we can also assign values to the variables when we declare them:

var x=5;
var carname="Volvo";

After the execution of the statements above, the variable x will hold the value 5,
and carname will hold the value Volvo. When we assign a text value to a
variable, use quotes around the value. If we re-declare a JavaScript variable, it
will not lose its value.

Local JavaScript Variables

A variable declared within a JavaScript function becomes LOCAL and
can only be accessed within that function (the variable has local scope). We
can have local variables with the same name in different functions, because
local variables are only recognized by the function in which they are declared.
Local variables are destroyed when we exit the function.

Global JavaScript Variables

Variables declared outside a function become GLOBAL, and all scripts
and functions on the web page can access it. Global variables are destroyed
when we close the page. If we declare a variable, without using "var", the
variable always becomes GLOBAL.

Assigning Values to Undeclared JavaScript Variables

If we assign values to variables that have not yet been declared, the variables
will automatically be declared as global variables. These statements:

x=5;
carname="Volvo";

It will declare the variables x and carname as global variables (if they don't
already exist).

INCLUDING JAVASCRIPT IN HTML
We have to include JavaScript code in HTML using three deferent ways
1. Within <head> tag

<html> <head>
 <script type="text/javascript">

 alert("Good Morning");
 </script>
</head> <body>
 <H2> Hello JavaScript </H2>
 <p>Welcome to JavaScript</p>
</body> </html>

pkandoubleos@gmail.com Page 5

2. Within <body> tag
<!DOCTYPE html>
<html lang="en">
<head>

 <title>Embedding JavaScript</title>
</head> <body>
 <div id="greet"></div>
 <script>
 document.getElementById("greet").innerHTML = "Hello World!";
 </script>

</body> </html>

3. Using external .js file

We can use the SRC attribute of the <SCRIPT> tag to call JavaScript
code from an external text file. This is useful if we have a lot of code or we want
to run it from several pages, because any number of pages can call the same
external JavaScript file. The text file itself contains no HTML tags.
Example:

<html> <head>
 <script type="text/javascript" src="mysript.js">

 </script>
</head> <body>
 <H2> Hello JavaScript </H2>
 <p>Welcome to GEMS College</p>
</body> </html>

The myscript.js file containing the following code only:

alert("Good Afternoon");
alert("Helloo");

DATA TYPES

JavaScript is a dynamic type language, means you don't need to specify
type of the variable because it is dynamically used by JavaScript engine. You
need to use var here to specify the data type. It can hold any type of values
such as numbers, strings etc. For example:

var a = 40; //holding number
var b = "Rahul"; //holding string

JavaScript provides different data types to hold different types of values. There
are two types of data types in JavaScript.

1. Primitive data type
2. Non-primitive (Complex) data type

pkandoubleos@gmail.com Page 6

Primitive data type
 String:- Strings are used for storing text. Strings must be inside of either

double or single quotes.
 var str1 = "It is alright, ";

 var str2 = `He is Johnny`;
 var str3 = 'Good Morning "Tomy"';

 Number:- There is only one type of Number is used to represent positive
or negative numbers with or without a decimal point.

var x = 125;
var y = x + 3.7;
var z= x + y;

 Boolean:- A boolean represents only one of two values: true, or false.

var bval = false;

var k = if(10>5) // k will store true

 Null:- Null has one value: null. It is explicitly nothing. A null value
means that there is no value. It is not equivalent to an empty string ("")
or 0, it is simply nothing.

 var a = null;
 Undefined:- The meaning of undefined is “value is not assigned”. If a

variable is declared, but not assigned, then its value is undefined:
var car;

Non-primitive (Complex) data type

 Object:- The object is a complex data type that allows you to store
collections of data. An object contains properties, defined as a key-value
pair. A property key (name) is always a string, but the value can be any
data type, like strings, numbers, booleans, or complex data types like
arrays, function and other objects.

<script type = “text/javascript”>

var person = {
 firstName : "Adnan",
 lastName : "Sami",
 age : 50,
 eyeColor : "blue"
};

document.getElementById("demo").innerHTML =
person.firstName + " is " + person.age + " years old.";
</script>

pkandoubleos@gmail.com Page 7

 Array:- An array is a type of object used for storing multiple values in
single variable. Each value (also called an element) in an array has a
numeric position, known as its index, and it may contain data of any data
type-numbers, strings, booleans, functions, objects, and even other
arrays. The array index starts from 0, so that the first array element
is arr[0] not arr[1]. The simplest way to create an array is by specifying
the array elements as a comma-separated list enclosed by square
brackets, as shown in the example below:

var colors = ["Red", "Yellow", "Green", "Orange"];
var cities = ["London", "Paris", "New York"];

alert(colors[0]); // Output: Red
alert(cities[2]); // Output: New York

 Function:- JavaScript doesn’t have a function data type but when we

find the data type of a function using the typeof operator, we find that it
returns a function. This is because a function is an object in JavaScript.
Ideally the data type of a function should return an object but instead, it
returns a function.

var greeting = function(){
 return ("Hello World!");
}

typeof(greetings); // This will return data type function

OPERATORS:
Arithmetic Operators
Arithmetic operators are used to perform arithmetic between variables and/or
values. Given that y=5, the table below explains the arithmetic operators:

Operator Description Example Result

+ Addition x=y+2 x=7 y=5

- Subtraction x=y-2 x=3 y=5

* Multiplication x=y*2 x=10 y=5

/ Division x=y/2 x=2.5 y=5

% Modulus (remainder) x=y%2 x=1 y=5

++ Increment x=++y x=6 y=6

x=y++ x=5 y=6

-- Decrement x=--y x=4 y=4

x=y-- x=5 y=4

pkandoubleos@gmail.com Page 8

Assignment Operators
Assignment operators are used to assign values to JavaScript variables.
Given that x=10 and y=5, the table below explains the assignment operators:

Operator Example Same As Result

= x=y x=5

+= x+=y x=x+y x=15

-= x-=y x=x-y x=5

= x=y x=x*y x=50

/= x/=y x=x/y x=2

%= x%=y x=x%y x=0

The String (+) Operator
The + operator can also be used to add string variables or text values together.
To add two or more string variables together, use the + operator.

txt1="What a very";
txt2="nice day";
txt3=txt1+txt2;

After the execution of the statements above, the variable txt3 contains "What a
very nice day". To add a space between the two strings, insert a space into one
of the strings:

txt1="What a very ";
txt2="nice day";
txt3=txt1+txt2;
or insert a space into the expression:
txt1="What a very";

txt2="nice day";
txt3=txt1+" "+txt2;

After the execution of the statements above, the variable txt3 contains:
"What a very nice day"

Relational (Comparison) Operators

Comparison operators are used in logical statements to determine equality or
difference between variables or values. Given that x=5, the table below explains
the comparison operators:

Operator Description Example

== is equal to x==8 is false
x==5 is true

=== is exactly equal to (value and
type)

x===5 is true
x==="5" is false

!= is not equal x!=8 is true

> is greater than x>8 is false

< is less than x<8 is true

pkandoubleos@gmail.com Page 9

>= is greater than or equal to x>=8 is false

<= is less than or equal to x<=8 is true

Comparison operators can be used in conditional statements to compare
values and take action depending on the result:
if (age<18) document.write("Too young");

Logical Operators
Logical operators are used to determine the logic between variables or values.
Given that x=6 and y=3, the table below explains the logical operators:

Operator Description Example

&& And (x < 10 && y > 1) is true

|| Or (x==5 || y==5) is false

! Not !(x==y) is true

CONDITIONAL STATEMENTS
In JavaScript we have the following conditional statements:

 if statement - use this statement to execute some code only if a specified
condition is true

 if...else statement - use this statement to execute some code if the
condition is true and another code if the condition is false

 if...else if....else statement - use this statement to select one of many
blocks of code to be executed

 switch statement - use this statement to select one of many blocks of
code to be executed

If Statement

Use the if statement to execute some code only if a specified condition is true.
Syntax

if (condition)
 {
 code to be executed if condition is true
 }

Note that if is written in lowercase letters. Using uppercase letters (IF) will
generate a JavaScript error!
Example

<script>
 var myAge = 20;
 var yourAge = 21;

 if(myAge < yourAge)
 {
 document.write("My Age is LESS than your Age");

pkandoubleos@gmail.com Page 10

 }
 </script>

Notice that there is no ..Else.. in this syntax. We tell the browser to execute
some code only if the specified condition is true.

If...else Statement
Use the if....else statement to execute some code if a condition is true and
another code if the condition is not true.

Syntax

if (condition)
 {
 code to be executed if condition is true
 }
else
 {

 code to be executed if condition is not true
 }

Example

<script>
 var myAge = 22;

 var yourAge = 20;

 if(myAge < yourAge)
 {
 document.write("My Age is Less than your Age");
 }

 else
 {
 document.write("My Age is Greater than your Age");
 }
 </script>

If...else if...else Statement
Use the if....else if...else statement to select one of several blocks of code to be
executed.
Syntax

if (condition1)
 {

 code to be executed if condition1 is true
 }
else if (condition2)
 {
 code to be executed if condition2 is true
 }

pkandoubleos@gmail.com Page 11

else
 {
 code to be executed if neither condition1 nor condition2 is true
 }

Example

<script type="text/javascript">
var a = 10;
var b = 5;
if (a>b)

 {
 document.write("a is larger than b");
 }
else if (a<b)
 {
 document.write("b is larger than a");

 }
else
 {
 document.write("a nd b are equal");
 }
</script>

Switch Statement
Use the switch statement to select one of many blocks of code to be executed.
Syntax

switch(n)
{

case 1:
 execute code block 1
 break;
case 2:
 execute code block 2
 break;

default:
 code to be executed if n is different from case 1 and 2
}

This is how it works: First we have a single expression n (most often a variable),
that is evaluated once. The value of the expression is then compared with the
values for each case in the structure. If there is a match, the block of code
associated with that case is executed. Use break to prevent the code from
running into the next case automatically.

pkandoubleos@gmail.com Page 12

Example
<script type = "text/javascript">
 var grade = 'C';
 switch (grade) {

 case 'A':
document.write("Good job
");

 break;

 case 'B':

document.write("Pretty good
");

 break;

 case 'C':
 document.write("
");
 break;

 case 'D':
document.write("Not so good
");

 break;

 case 'F':

document.write("Failed
");

 break;

 default:

document.write("Unknown Grade
")
 }
 </script>

LOOPS

Loops execute a block of code a specified number of times, or while a
specified condition is true. Often when you write code, you want the same block
of code to run over and over again in a row. Instead of adding several almost
equal lines in a script we can use loops to perform a task like this. In
JavaScript, there are two different kind of loops:

 for - loop through a block of code a specified number of times
 while - loop through a block of code while a specified condition is true
 do.…..while loop through a block of statement will execute at lease once

The for Loop
The for loop is used when you know in advance how many times the script
should run. For loop repeats until a specified condition evaluates to false

pkandoubleos@gmail.com Page 13

Syntax
for (initialisation; condition_checkd; incre/decre)
{
code to be executed

}
For statement includes the following three important parts:

 The loop initialization where we initialize our counter to a starting value.
The initialization statement is executed before the loop begins.

 The test statement which will test if a given condition is true or not.
 If the condition is true, then the code given inside the loop will be

executed, otherwise the control will come out of the loop.
 The iteration statement where we can increase or decrease our counter.
 We can put all the three parts in a single line separated by semicolons.

Example

<script>

for (i = 15; i <= 65; i++)
{
 if(i%2==0)
 {
 document.write(" "+i);
 }

}
</script>

The while loop
The while loop loops through a block of code while a specified condition is true.
The condition is evaluated before executing the statement
Syntax

while (condition)
 {
 code to be executed
 }

Example

<script>
var i=15;
while (i <= 65)
{
 if(i%2==0)

 {
 document.write(" "+i);
 }
 i=i+1;
}
</script>

pkandoubleos@gmail.com Page 14

The do...while Loop
The do...while loop is a variant of the while loop. This loop will execute the
block of code ONCE, and then it will repeat the loop as long as the specified
condition is true. Don’t miss the semicolon after the while statement
Syntax

do
 {
 code to be executed
 }
while (condition);

Example

<script>
var i=15;

do{

 if(i%2==0)
 {
 document.write(" "+i);
 }
 i=i+1;
}

while (i <= 65) ;

The break Statement
The break statement will break the loop and continue executing the code that
follows after the loop
Example

<script>
var i;
for (i = 0; i <= 15; i++) {
 if (i === 7)
 break;

 document.write("
The number is: "+i);
}
</script>

The continue Statement
The continue statement terminates execution of the statements in the

current iteration of the current loop, and continues execution of the loop with
the next iteration.
Example

<script>
var i;
for (i = 0; i <= 15; i++) {
 if (i === 7)

pkandoubleos@gmail.com Page 15

 continue;
 if (i === 11)
 continue;
 document.write("
The number is: "+i);

}
</script>

OUTPUT FUNCTIONS
Two output functions are used in JavaScript

 Write() method outputs one or more values to the screen without a
newline character.

 Writeln() method outputs one or more values to the screen with a
newline character.

Example
<html><body>
<p>Note that write() does NOT add a new line after each statement:</p>

<script type="text/javascript">
document.write("Hello World!");
document.write("Have a nice day!");
</script>
<p>Note that writeln() add a new line after each statement:</p>
<script type="text/javascript">

document.writeln("Hello World!");
document.writeln("Have a nice day!");
</script>
</body> </html>

POPUP BOXES

In JavaScript three types of popups used
1. alert() Box
2. confirm() Box
3. prompt() Box

Alert Box
An alert box is often used if we want to make sure information comes through
to the user. When an alert box pops up, the user will have to click "OK" to
proceed.
Syntax:

alert("sometext");

Example:

<html><head>
</head><body>
 <h2>Alert Box Displayed</h2>
 <script type="text/javascript">

pkandoubleos@gmail.com Page 16

 alert("Good Morning");
 </script>
</body></html>

Confirm Box
A confirm box is often used if we want the user to verify or accept something.
When a confirm box pops up, the user will have to click either "OK" or "Cancel"
to proceed. If the user clicks "OK", the box returns true. If the user clicks
"Cancel", the box returns false.
Syntax

confirm("sometext");
Example

<html><head>
</head>
<body>
 <h2>Confirm Box Displayed</h2>

 <script type="text/javascript">
 confirm("Do You Wnats to Open This Document?");
 </script>
</body>
</html>

Prompt Box
A prompt box is often used if we want the user to input a value before entering
a page. When a prompt box pops up, the user will have to click either "OK" or
"Cancel" to proceed after entering an input value. If the user clicks "OK" the
box returns the input value. If the user clicks "Cancel" the box returns null.
Syntax

prompt("sometext","defaultvalue");

Example

<html><head>
</head>
<body>

 <h2>Prompt Box Displayed</h2>
 <script type="text/javascript">
 var name;
 name=prompt("Please enter your name","Harry Potter");
 document.write(name);
 </script>

</body>
</html>

pkandoubleos@gmail.com Page 17

FUNCTIONS
There are two variant of functions

1. Built-in functions
2. User defined functions

Built-in Global functions
 Alert(), Confirm(), Prompt() are already discussed

 isNan():- It determines whether a value is NaN or not. The NaN means Not-

a-Number. It checks the value is an illegal number. This function will
returns Boolean value. That is, it returns true if the value equates to NaN.
Otherwise it returns false.

Examle

isNan(123); //returns false
isNan(“hello”); //returns true

 Number():- It is used to convert a specified object into a number. It converts

variable to number
Example

Number(true); //return 1
Number(123); //return 123
Number(“hello”); //return NaN

 parseInt():- The parseInt() function parses a string argument and returns

an integer of the specified radix (the base in mathematical numeral
systems). The radix parameter is used to specify which numeral system to
be used. If the string cannot be converted to an integer value, NaN is
returned

Syntax

parseInt(value, radix);

User Defined Function

A function will be executed by an event or by a call to the function. To
keep the browser from executing a script when the page loads, you can put
your script into a function. A function contains code that will be executed by
an event or by a call to the function. We may call a function from anywhere
within a page (or even from other pages if the function is embedded in an
external .js file). Functions can be defined both in the <head> and in the <body>
section of a document. However, to assure that a function is read/loaded by
the browser before it is called, it could be wise to put functions in the <head>
section.

Every function should begin with the keyword function followed by

function name. The function name should be unique. A list of parameters

pkandoubleos@gmail.com Page 18

enclosed within parenthesis and separated by comma. A list of statement
composing the body of the function enclosed within curly braces { }. Function
can be called (invoked) by typing its name followed by a set of parenthesis.
Function can return a value (result) back to the script using return statement.

Syntax:-

function function_name(var1,var2,...,varX)
{
some codes;
}

The parameters var1, var2, etc. are variables or values passed into the

function. The { and the } defines the start and end of the function. A function
with no parameters must include the parentheses () after the function
name. Do not forget about the importance of capitals in JavaScript! The
word function must be written in lowercase letters, otherwise a JavaScript
error occurs! Also note that we must call a function with the exact same
capitals as in the function name.
Example
<html>
<head>
 <script type="text/javascript">
 function fact()
 {
 var n,f;
 f=1;
 n=prompt("Enter The Value");
 for(i=1;i<=n;i++)
 {
 f = f * i;
 }
 document.write("the factorial of "+n+" is: "+f);
 }
 </script>
</head>
<body>
 <script type="text/javascript">
 fact();
 </script>
</body>
</html>

pkandoubleos@gmail.com Page 19

CALLING FUNCTIONS WITH TIMER
 To execute a function after a certain period of time, we use setTimeout().

Its basic syntax is
setTimeout(function, milliseconds)

This function accepts two parameters: A function, which is the function to
execute. An optional delay parameter, in milliseconds

 To execute a function repeatedly, starting after the interval of time, then

repeating continuously at that interval, we can use setInterval(). Its basic
syntax is

setInterval(function, milliseconds);

Example 1

<html>
<head>
 <script type="text/javascript">
 function fact()
 {
 var n,f;
 f=1;

 n=prompt("Enter The Value");
 for(i=1;i<=n;i++)
 {
 f = f * i;
 }
 document.write("the factorial of "+n+" is: "+f);

 }
 </script>
</head>
<body>
 <script type="text/javascript">
 setTimeout(fact,5000);

 </script>
</body>
</html>

Example 2

<html>
<head>
 <script type="text/javascript">
 function display()
 {

 alert("Good Morning");
 }

pkandoubleos@gmail.com Page 20

 </script>
</head>
<body>
 <script type="text/javascript">

 setInterval(display,3000);
 </script>
</body>
</html>

JAVASCRIPT EVENTS
By using JavaScript, we have the ability to create dynamic web pages.

Events are actions that can be detected by JavaScript. Every element on a web
page has certain events which can trigger a JavaScript.

 onClick

We can use the onClick event of a button element to indicate that a
function will run when a user clicks on the button. We define the events in the
HTML tags. Execute a JavaScript when the user clicks on an element. Events
are normally used in combination with functions, and the function will not be
executed before the event occurs.

Example
<html> <head>
 <script>
 function display() {
 alert("GEMS COLLEGE");
 }
 </script> </head>
 <body>
 <p>Click the following button and see result</p>
 <form >
 <input type="button" onclick="display()" value="Click Me" />
 <h1 onclick="this.innerHTML='Ooops!'">Click on this text!</h1>
 </form> </body><html>

 onLoad

The onload event occurs immediately after a page is loaded. The onLoad
event is triggered when the user enters the web page. The onLoad event is often
used to check the visitor's browser type and browser version, and load the
proper version of the web page based on the information. The onLoad event is
also often used to deal with cookies that should be set when a user enters a
web page. For example, we could have a popup asking for the user's name upon
his first arrival to our page. The name is then stored in a cookie. Next time the
visitor arrives at our page; we could have another popup saying something like:
"Welcome John Doe!".

pkandoubleos@gmail.com Page 21

Example
Alert "Page is loaded" immediately after a page is loaded:

<!DOCTYPE html>
<html><head>

<script>
function display() {
 alert("Hello, Good Morning");
}
</script></head>
<body onLoad="display()">

<h1>Hello World!</h1>
</body></html>

 onBlur()

It occurs when an object loses focus. The onblur event is most often
used with form validation code. When the user leaves a form field, it will occur.
The onblur event is the opposite of the onfocus event.

Example

<!DOCTYPE html>
<html><body>
Enter your name: <input type="text" id="fname" onblur="display()">

<h3>When the focus is lost, the input text converts into upper case.</h3>
<script>
function display() {
 var x = document.getElementById("fname");
 x.value = x.value.toUpperCase();
}

</script></body><html>

 onChange

The onchange event occurs when the content of an element, the
selection, or the checked state have changed. The onchange event occurs when
the value of an element has been changed. For radio buttons and checkboxes,
the onchange event occurs when the checked state has been changed. Only
works on <input>, <textarea> and <select> elements.

Example

<!DOCTYPE html>
<html><body>

Enter your name: <input type="text" id="fname" onChange="display()">
<h3>When the focus is lost, the input text converts into upper case.</h3>
<script>
function display() {
 var x = document.getElementById("fname");
 x.value = x.value.toUpperCase();

pkandoubleos@gmail.com Page 22

}
</script></body><html>

 onSubmit

The onsubmit event occurs when the submit button in a form is clicked.
The onSubmit event is used to validate ALL form fields before submitting it.
Below is an example of how to use the onSubmit event. The checkForm()
function will be called when the user clicks the submit button in the form. If
the field values are not accepted, the submit should be cancelled. The function
checkForm() returns either true or false. If it returns true the form will be
submitted, otherwise the submit will be cancelled:

Example

<!DOCTYPE html>
<html><body>
<h3>When you submit the form, a function is triggered which alerts some

text.</h3>
<form action="server.php" onsubmit="display()">
 Enter name: <input type="text" name="fname">
 <input type="submit" value="Submit">
</form><script>
function display() {

 alert("The form was submitted Sucessfully....");
}
</script></body><html>

DOCUMENT OBJECT MODEL
The DOM is a W3C standard. The DOM defines a standard for accessing

documents; DOM is a platform and language-neutral interface. DOM allows
programs and scripts to dynamically access and update the content, structure,
and style of a document. DOM standard is separated into 3 different parts:

 Core DOM - standard model for all document types
 XML DOM - standard model for XML documents
 HTML DOM - standard model for HTML documents

The Document Object Model (DOM) is a programming interface for

HTML and XML documents. It represents the page so that programs can
change the document structure, style, and content. The DOM represents the
document as nodes and objects. That way, programming languages can
connect to the page.

A Web page is a document. This document can be either displayed in

the browser window or as the HTML source. But it is the same document in
both cases. The Document Object Model (DOM) represents that same
document so it can be manipulated. The DOM is an object-oriented

pkandoubleos@gmail.com Page 23

representation of the web page, which can be modified with a scripting
language such as JavaScript.

The Document Object Model (DOM) is an application programming

interface (API) for manipulating HTML and XML documents. The DOM
represents a document as a tree of nodes. It provides API that allows you to
add, remove, and modify parts of the document effectively. Note that the DOM
is cross-platform and language-independent ways of manipulating HTML and
XML documents. JavaScript can access all the elements in a webpage making
use of Document Object Model (DOM). In fact, the web browser creates a DOM
of the webpage when the page is loaded. The DOM model is created as a tree
of objects like this:

String Object

A string is a sequence of letters, numbers, special characters or
combination of all. It is a global object is used to store strings. A string can be
any text inside double or single quotes:

String Property
Length:- Returns the length of a string
The following table lists the standard methods of the String object.

Method Description

big() Display text as if in a <big> element
bold() Display text as if in a <bold> element
charAt() Returns the character at the specified index.
concat() Joins two or more strings, and returns a new string.
indexOf() Returns the index of the first occurrence of the specified

value in a string.
italics() Display text as if in a <i> element

pkandoubleos@gmail.com Page 24

search() Searches a string against a regular expression, and returns
the index of the first match.

slice() Extracts a portion of a string and returns it as a new string.
split() Splits a string into an array of substrings.
substr() Extracts the part of a string between the start index and a

number of characters after it.
substring() Extracts the part of a string between the start and end

indexes.
toLowerCase() Converts a string to lowercase letters.
toString() Returns a string representing the specified object.
toUpperCase() Converts a string to uppercase letters.
trim() Removes whitespace from both ends of a string.

Example

<html><body>
<h2>The length property returns the length of a string:</h2>
<p></p>
<p id="demo"></p>

<script type="text/javascript">
var str="Hello, Good Morning to All, Have a Nice Day!
";
document.write(str);
document.write("
The length is:
 " +str.length);
var pos = str.indexOf("Morning");
document.write("
The position of Morning is:");

document.write("
"+pos);
var up=str.toUpperCase();
document.write(up);

var lw=str.toLowerCase();
document.write(lw);

var sub=str.substring(15,30);
document.write(sub);
</script></body><html>

Date Object
The Date object is a datatype built into the JavaScript. The date objects

are created with the new Date() constructor. By default, JavaScript will use the
browser's time zone and display a date as a full text string:

Mon Jul 20 2020 17:33:21 GMT+0530 (India Standard Time)

Most methods simply allow us to get and set the year, month, day, hour,
minute, second, and millisecond fields of the object.
There are 4 ways to create a new date object:

pkandoubleos@gmail.com Page 25

 new Date()
 new Date(milliseconds)
 new Date(date string)
 new Date(year, month, day, hours, minutes, seconds, milliseconds)

Method Description

getDate() It returns the integer value between 1 and 31 that
represents the day for the specified date on the basis of
local time.

getDay() It returns the integer value between 0 and 6 that
represents the day of the week on the basis of local time.

getFullYears() It returns the integer value that represents the year on the
basis of local time.

getHours() It returns the integer value between 0 and 23 that
represents the hours on the basis of local time.

getMilliseconds() It returns the integer value between 0 and 999 that
represents the milliseconds on the basis of local time.

getMinutes() It returns the integer value between 0 and 59 that
represents the minutes on the basis of local time.

getMonth() It returns the integer value between 0 and 11 that
represents the month on the basis of local time.

getSeconds() It returns the integer value between 0 and 60 that
represents the seconds on the basis of local time.

Method Description

setDate() It sets the day value for the specified date on the basis of
local time.

setDay() It sets the particular day of the week on the basis of local
time.

setFullYears() It sets the year value for the specified date on the basis of
local time.

setHours() It sets the hour value for the specified date on the basis of
local time.

setMilliseconds() It sets the millisecond value for the specified date on the
basis of local time.

setMinutes() It sets the minute value for the specified date on the basis
of local time.

setMonth() It sets the month value for the specified date on the basis
of local time.

setSeconds() It sets the second value for the specified date on the basis
of local time.

toString() It returns the date in the form of string.

pkandoubleos@gmail.com Page 26

Example
<!DOCTYPE html>
<html> <body>
<h2>Date() Object</h2>

<p id="demo"></p>
<script>
var d = new Date();
document.write(d);
var d1 = new Date(2018, 11, 24, 10, 33, 30, 38);
document.getElementById("demo").innerHTML = d1;

var d2 = new Date(2018, 11, 24);
document.write("

"+d2);
var d = new Date();
document.write("The current Year is: "+d.getFullYear());
document.write("
The current Month is: "+d.getMonth());
document.write("
The current Date is: "+d.getDate());

document.write("
The current Hours is: "+d.getHours());
document.write("
The current Minute is: "+d.getMinutes());
document.write("
The current Second is: "+d.getSeconds());
document.write("
The current Milliseconds is: "+d.getMilliseconds());
document.write("
The current Day is: "+d.getDay());
</script></body><html>

Array Object

An array is a type of object used for storing multiple values in a single
variable. A fixed-size sequential collection of elements of the same type. Each
value in an array has a numeric position, called index. The array index starts
from zero (0)
 var cars = [“Hyundai", "Volvo", "BMW"];

Method Description

concat() Merge two or more arrays, and returns a new array.
findIndex() Returns the index of the first element in an array that pass

the test in a testing function.
join() Joins all elements of an array into a string.
pop() Removes the last element from an array, and returns that

element.
push() Adds one or more elements to the end of an array, and

returns the array's new length.
reverse() Reverses the order of the elements in an array.
slice() Selects a part of an array, and returns the new array.
sort() Sorts the elements of an array.
toString() Converts an array to a string, and returns the result.

pkandoubleos@gmail.com Page 27

Example
<!DOCTYPE html>
<html><body>
<h3>Array Object </h3>
<p id="demo"></p>
<script>
 var fruits = ["Banana", "Orange", "Apple", "Mango"];
 var fname=["Raju", "Kumar", "Babu", "Arjun","Lakshmi", "Divya"];
 document.write("
"+fruits.toString());
 document.write("
The No. of elements in array is: "+fruits.length);
 document.write("
The deleted element is: "+fruits.pop());
 document.write("
"+fruits.toString());
 document.write("
Now No. of elements in array is: "+fruits.length);
 document.write("
Adding two elements");
 fruits.push("Grape","Chicku");
 document.write("
"+fruits.toString());
 document.write("
Now No. of elements in array is: "+fruits.length);
 document.write("
Reverseof the array is: "+fruits.reverse());
 document.write("
"+fruits.toString());
 document.write("
Sorted array is: "+fruits.sort());
 document.write("
"+fruits.toString());

</script></body></html>

