
Basic Computer
Organization and Design

Computer Organization & Architecture - MODULE 3
PART 1

www.teachics.org

Instruction Codes

Instruction Codes

● The organization of the computer is defined by its internal registers, the timing and control
structure, and the set of instructions that it uses.

● A computer instruction is a binary code that specifies a sequence of microoperations for

the computer.

● An instruction code is a group of bits that instruct the computer to perform a specific

operation.

● Instruction code is usually divided into two parts.

○ Operation part - Group of bits that define such operations as add, subtract, multiply,

shift, and complement.

○ Address part - Contains registers or memory words where the address of operand is

found or the result is to be stored.

● Each computer has its own instruction code format.

Operation Code

● The operation code(op-code) of an instruction is a group of bits that define such operations as
add, subtract, multiply, shift, and complement.

● The number of bits required for the operation code of an instruction depends on the total

number of operations available in the computer.(n bits for 2n operations)

● An operation code is sometimes called a macro-operation because it specifies a set of

micro-operations.

Stored Program Organization

● Simplest way to organize computer is to have one processor register(Accumulator AC) and an
instruction code format with two parts.

○ First-Operation to be performed

○ Second – Address

● The memory address tells the control where to find an operand in memory.

● This operand is read from memory and used as the data to be operated on together with the

data stored in the processor register.

● Instructions are stored in one section of
the memory and data in another.

● For a memory unit with 4096 words we
need 12 bits to specify an address since
212=4096.

● 4 bits are available for opcode to specify
one out of 16 possible operations.

Steps

● The control reads a 16-bit instruction from the program portion of memory.
● It uses the 12-bit address part of the instruction to read a 16-bit operand from the data portion

of memory.

● It then executes the operation specified by the operation code.

● The operation is performed with the memory operand and the content of AC.

Direct & Indirect Addressing Modes

● Following Addressing Modes are used for address portion of the instruction code.
○ Immediate- The address part specifies an operand.

Eg: ADD 5

○ Direct- The address part specifies the address of an operand.

○ Indirect- The address part specifies a pointer(another address) where the address of the

operand can be found.

● One bit of the instruction code(I) can be used to distinguish between a direct and an indirect

address.

Effective Address

It is the address of the operand in a
computation-type instruction or the target
address in a branch-type instruction.

The effective address in the instruction of Fig.(b)
is 457 and in the instruction of Fig(c) is 1350.

Computer Registers

Computer Registers

Need of Registers?

● Computer instructions are normally stored in consecutive memory locations and are executed
sequentially one at a time.

● The control reads an instruction from a specific address in memory and executes it. It then

continues by reading the next instruction in sequence and executes it, and so on.

● This type of instruction sequencing needs a counter to calculate the address of the next

instruction after execution of the current instruction is completed.

● It is also necessary to provide a register in the control unit for storing the instruction code

after it is read from memory.

● The computer needs processor registers for manipulating data and a register for holding a

memory address.

List of basic Registers

Code Bits Name Purpose

DR 16 Data Register Holds memory operand

AR 12 Address register Holds address for memory

AC 16 Accumulator Processor register

IR 16 Instruction register Holds instruction code

PC 12 Program counter Holds address of instruction

TR 16 Temporary register Holds temporary data

INPR 8 Input register Holds input character

OUTR 8 Output register Holds output character

Common Bus System

Need of Common Bus System ?

● The basic computer has eight registers, a memory unit, and a control unit.
● Paths must be provided to transfer information from one register to another and between

memory and registers.

● The number of wires will be excessive if connections are made between the outputs of each

register and the inputs of the other registers.

● Hence more efficient scheme with a common bus is used.

● The outputs of seven registers and
memory are connected to the
common bus.

● The specific output that is selected
for the bus lines at any given time is
determined from the binary value of
the selection variables S2, S1, and S0.

● The number along each output
shows the decimal equivalent of the
required binary selection.

● For example, the number along the
output of DR is 3. The 16-bit outputs
of DR are placed on the bus lines
when S2S1S0 =011 since this is the
binary value of decimal 3.

● The lines from the common bus are
connected to the inputs of each
register and the data inputs of the
memory.

● The particular register whose LD
(load) input is enabled receives the
data from the bus during the next
clock pulse transition.

● The memory receives the contents of
the bus when its write input is
activated.

● The memory places its 16-bit output
onto the bus when the read input is
activated and S2S1S0 =111.

● INPR is connected to provide
information to the bus but OUTR can
only receive information from the
bus.

● This is because INPR receives a
character from an input device which
is then transferred to AC.

● OUTR receives a character from AC
and delivers it to an output device.

● There is no transfer from OUTR to
any of the other registers.

● The inputs of AC come from an adder
and logic circuit.

● This circuit has three sets of inputs.
● One set of 16-bit inputs come from

the outputs of AC. They are used to
implement register micro-operations
such as complement AC and shift AC.

● Another set of 16-bit inputs come
from the data regisler DR. The inputs
from DR and AC are used for
arithmetic and logic
microoperations.

● A third set of 8-bit inputs come from
the input register INPR.

Computer Instructions

Instruction Format

● The basic computer has three instruction code formats each having 16 bits
○ Memory reference instructions

○ Register reference instructions

○ I/O instructions

● The opcode part of the instruction contains three bits and the meaning of the remaining 13

bits depends on the operation code encountered.

Memory reference instructions

● Bits 0-11 for specifying address.
● Bits 12-14 for specifying address.

● 15th bit specifies addressing modes. (0 for direct and 1 for indirect)

● Opcode=000 through 110
● I=0 or 1

● Eg:
○ AND - 0xxx(direct) or 8xxx(indirect)
○ ADD - 1xxx or 9xxx

Register reference instructions

● Recognized by the operation code 111 with a 0 in the 15th bit of the instruction.
● Specifies an operation on or a test of the AC register.

● An operand from memory is not needed.

● Therefore the 12 bits are used to specify the operation to be executed.

● Eg:
○ CLA - 7800 : Clear AC
○ CLE - 7400 : Clear E

I/O instructions

● These instructions are needed for transfering informations to and from AC register.
● Recognized by the opcode 111 and a 1 in the 15th bit.

● Bits 0-11 specify the type of I/O Operation performed.

● Eg:
○ INP - F800 : Input characters to AC
○ OUT - F400 : Output characters from AC

Instruction Set Completeness

● The set of instructions are said to be complete if the computer includes a sufficient number of
instructions in each of the following categories

a. Arithmetic, logical, and shift instructions

b. Instructions for moving information to and from memory and processor registers

c. Program control instructions

d. Input and output instructions

Timing and Control

Timing and Control

● The timing for all registers in the basic computer is controlled by a master clock generator.
● The clock pulses are applied to all flip-flops and registers.

● The clock pulses do not change the state of a register unless the register is enabled by a

control signal.

● Two major types of control organization:

○ hardwired control

○ microprogrammed control.

Hardwired Control

● The control logic is implemented with
gates, flip-flops, decoders, and other
digital circuits.

● It can be optimized to produce a fast
mode of operation.

● Requires changes in the wiring among
the various components if the design
has to be modified or changed.

Microprogrammed Control

● The control information is stored in a
control memory.

● The control memory is programmed
to initiate the required sequence of
microoperations.

● Required changes or modifications
can be done by updating the
microprogram in control memory.

Hardwired control unit

● Consists of two decoders, a sequence counter,
and a number of control logic gates.

● An instruction read from memory is placed in

the instruction register(IR).

● The IR is divided into three parts:

○ I bit, opcode, and Address bits.

● Op-code in 12-14 bits are decoded with a 3x8

decoder.

● 8 outputs of the decoder are designated by the

symbols D0 through D7.

● Bit 15 is transferred to a flip-flop I.

● Bits 0-11 are applied to the control logic gates.

Hardwired control unit

● The 4-bit sequence counter can count in binary
from 0-15.

● The outputs of the counter are decoded into 16

timing signals T0-T15.

● The sequence counter SC can be incremented

or cleared synchronously.

● Mostly,SC is incremented to provide the

sequence of timing signals(T1,T2,...,T15)

● Once in a while, the counter is cleared to 0,

causing the next active timing signal to be T0.

● Eg: Suppose,at time T4, SC is cleared to 0 if

decoder output D3 is active. D3T4: SC ← 0.

Hardwired control unit

● The SC responds to the positive transition of
the clock.

● Initially, the CLR input of SC is active.

● Hence it clears SC to 0, giving the timing signal

T0 out of the decoder.

● T0 is active during one clock cycle and will

trigger only those registers whose control

inputs are connected to timing signal T0.

● SC is incremented with every positive clock

transition, unless its CLR input is active.

● This produces the sequence of timing signals

T0, T1, T2, T3, T4 up to T15 and back to T0.

Basic Computer
Organization and Design

Computer Organization & Architecture - MODULE 3
PART 2

www.teachics.org

Instruction Cycle

Instruction Cycle

● A program consists of a sequence of instructions is executed in the computer by going through
a cycle for each instruction.

● Each instruction cycle in turn is subdivided into a sequence of subcycles or phases

● They are

a. Fetch an instruction from memory.

b. Decode the instruction.

c. Read the effective address from memory if the instruction has an indirect address.

d. Execute the instruction.

● Upon the completion of step 4, the control goes back to step 1 to fetch, decode, and execute

the next instruction.

● This process continues indefinitely unless a HALT instruction is encountered.

Fetch & Decode

● Initially, the program counter PC is loaded with the address of the first instruction in the
program.

● SC is cleared to 0, providing a decoded timing signal T0.

● After each clock pulse, SC is incremented by one, so that the timing signals go through a

sequence T0, T1, T2, and so on.

● The microoperations for the fetch and decode phases are

○ T0: AR ← PC

○ T1: IR ← M [AR], PC ← PC+1

○ T2: D0,. . . , D7 ← Decode IR(12–14), AR ← IR(0-11), I ← IR(15)

Fetch & Decode

● During T0 the address is transferred from PC to AR.
● At T1 The instruction read from memory is placed in the instruction register IR and PC is

incremented by one to prepare it for the address of the next instruction.

● At time T2, the op-code in IR is decoded, the indirect bit is transferred to flip-flop I, and the

address part of the instruction is transferred to AR.

● Note that SC is incremented after each clock pulse to produce the sequence T0, T1, and T2.

Determine the Type of Instruction

● During time T3, the control unit determines the type of instruction that was just read from
memory.

● Memory Reference Instructions

○ If D7=0, the op-code will be 000 through 110

○ If D7 =0 and I =1 - memory reference instruction with an indirect address.

○ The micro-operation for the indirect address condition can be symbolized by

AR ← M [AR].

● Register Reference or I/O Instructions

○ If D7 =1 and I=0 - Register Reference Instruction.

○ If D7 =1 and I=1 - I/O Instruction.

● The three instruction types are subdivided into four separate paths.
● The selected operation is activated with T3.

○ D7’ IT3 : AR ← M[AR].

○ D7’ IT3 : Nothing.

○ D7 I’T3 : Execute a register-reference instruction.

○ D7 IT3 : Execute an input–output instruction.

Memory Reference Instruction

Memory Reference Instruction

● Memory reference instructions performs operation with memory operand.

● Execution of memory reference instruction starts with timing signal T4.

● There are 7 memory instruction.

AND to AC

● Performs AND logic operation on pairs

of bits in AC and the memory word

specified by effective address.

● The result of operation is transferred to

AC.

● D0T4: DR ← M [AR]

D0T5: AC ← AC ^ DR, SC ← 0

ADD to AC

● Adds the content of the memory word

specified by the effective address to

the value of AC.

● Sum is transferred to AC and output

carry Cout is transferred into E

(Extended accumulator flipflop)

● D1T4: DR ← M [AR]

D1T5: AC ← AC ^ DR, E ← Cout, SC ← 0

LDA : Load to AC

● Transfers the memory word specified

by the effective address to AC.

● D2T4: DR ← M [AR]

D2T5: AC ← DR, SC ← 0

STA : Store to AC

● Stores the content of AC into the

memory word specified by the

effective address.

● D3T4: M [AR] ← AC, SC ← 0

BUN : Branch
Unconditionally

● Transfers the program to the

instruction specified by the effective

address.

● D4T4: PC ← AR, SC ← 0

ISZ: Increment and Skip if
Zero

● Increments the word specified by the

effective address, and if the

incremented value is equal to 0, PC is

incremented by 1 in order to skip the

next instruction in the program.

● D6T4: DR ← M [AR]

D6T5: DR ← DR+1

D6T6: M [AR] ← DR, if (DR 0) then (PC

← PC 1), SC ← 0

BSA : Branch and Save Return Address

● Used for branching to a portion of the

program called a subroutine or procedure.

● It stores the address of the next

instruction into a memory location

specified by the effective address.

● The effective address plus one is

transferred to PC to serve as the address

of the first instruction in the subroutine.

● D5T4: M [AR] ← PC, AR ← AR + 1

D5T5: PC ← AR, SC ← 0

Register Reference Instructions

Register Reference Instructions

● It specifies an operation on or test of the Accumulator.
● An operand from memory is not needed.

● So bits 0-11 bits the operation to be executed.

● They are recognized by the control when D7 = 1 and I = 0.

● Execution start with the timing signal T3.

● Each control function needs the Boolean relation D7IT3 and is represented by the symbol r.

● By assigning the symbol B, to bit i of IR(0-11), all control functions can be simply denoted by

rBi.

Input and Output
Communication

Input–Output Communication

● A computer can serve no useful purpose unless it communicates with the external
environment.

● Instructions and data stored in memory must come from some input device.

● Computational results must be transmitted to the user through some output device.

● To demonstrate the most basic requirements for input and output communication, we will use

as an illustration a terminal unit with a keyboard and printer.

Input-Output Configuration

● Terminal sends and receives information
(eight bits of an alphanumeric code).

● The serial information from the keyboard is

shifted into the input register INPR.

● The serial information for the printer is

stored in the output register OUTR.

● Both INPR and OUTR consists of eight bits.

Input-Output Configuration

● INPR and OUTR communicate with a
communication interface serially and with

the AC in parallel.

● The transmitter interface receives serial

information from the keyboard and

transmits it to INPR.

● The receiver interface receives information

from OUTR and sends it to the printer.

Input-Output Configuration

● The 1-bit input flag FGI is a control flip-flop.
● The flag bit is set to 1 when new

information is available in the input device

and is cleared to 0 when the information is

accepted by the computer.

● Initially, the input flag FGI is cleared to 0.

● When a key is struck, an 8-bit code is

shifted into INPR and FGI is set to 1.

● When another key is striked, the computer

checks the flag bit; if it is 1, the information

from INPR is transferred to AC and FGI is

cleared to 0.

Input-Output Configuration

● Initially, the output flag FGO is set to 1.
● The computer checks the flag bit; if it is 1,

the information from AC is transferred in

parallel to OUTR and FGO is cleared to 0.

● The output device accepts information,

prints the corresponding character, and

when the operation is completed, it sets

FGO to 1.

● The computer does not load a new

character into OUTR when FGO is 0. (Busy

printing)

Input-Output Instructions

● Needed for
○ transferring information to and from AC register.

○ for checking the flag bits.

○ for controlling the interrupt facility.

● Recognized by the control when D7 =1 and I =1.

● The remaining bits(0-11) of the instruction specify the particular operation.

● Executed with the clock transition associated with timing signal T3.

● Each control function needs a Boolean relation D7IT3, and is represented by the symbol p.

● By assigning the symbol Bi to bit i of IR, all control functions can be denoted by pBi for i = 6

through 11.

Input-Output Instructions

Program Interrupt

Need for Interrupt

● In basic case (Programmed control transfer), the computer keeps checking the flag bit, and
when it finds it set, it initiates an information transfer.

● This type of transfer is inefficient because of the difference of information flow rate between

the computer and that of the input–output device.

● The computer is wasting time while checking the flag instead of doing some other useful

processing task.

Program Interrupt

● An alternative to the programmed controlled procedure is to let the external device inform the
computer when it is ready for the transfer.

● In the meantime the computer can be busy with other tasks.

● This type of transfer uses the interrupt facility.

● While the computer is running a program, it does not check the flags.

● When a flag is set, the computer is interrupted from proceeding with the current program.

● The computer stops what it is doing to take care of the input or output transfer.

● It then returns to the current program to continue what it was doing before the interrupt

Program Interrupt

● The interrupt facility can be enabled or disabled by a flip-flop IEN.
● The interrupt enable flip-flop IEN can be set and cleared with two instructions (IOF, ION).

○ When IEN is cleared to 0 (with the IOF instruction), the flags cannot interrupt the

computer.

○ When IEN is set to 1 (with the ION instruction), the computer can be interrupted.

● An interrupt flip-flop R is included in the computer to decide when to go through the interrupt

cycle.

● So the computer is either in an instruction cycle or in an interrupt cycle.

Interrupt Cycle

● When R = 0, the computer goes through an
instruction cycle.

● During the execute phase IEN is checked. If it

is 0, control continues with the next

instruction cycle.

● If IEN = 1, control checks the flag bits. If both

flags are 0, control continues with the next

instruction cycle.

● If either flag is set to 1 while IEN = 1, R is set

to 1 and control goes to an interrupt cycle.

Interrupt Cycle

● The interrupt cycle is a hardware
implementation of a branch and save return

address operation.

● The return address in PC is stored in a specific

location. (Here address 0)

● Control then inserts address 1 into PC and

clears IEN and R so that no more interruptions

can occur until the interrupt request serviced

and flag has been set.

● Micro-operations

○ RT0: AR ← 0, TR ← PC

○ RT1: M [AR] ← TR, PC ← 0

○ RT2: PC ← PC 1, IEN ← 0, R ← 0, SC ← 0

Design of Basic Computer

Design of Basic Computer

The basic computer consists of the following hardware components:

1. A memory unit with 4096 words of 16 bits each.
2. Nine registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC.

3. Seven flip-flops: I, S, E, R, IEN, FGI, and FGO.

4. Two decoders: a 3x8 operation decoder and a 4x16 timing decoder.

5. A 16-bit common bus.

6. Control logic gates.

7. Adder and logic circuit connected to the input of AC.

Design of Basic Computer

Control Logic Gates

● The inputs to this circuit come from
○ two decoders

○ I flip-flop

○ bits 0 through 11 of IR.

● The other inputs to the control logic are

○ AC bits 0 through 15 to check if AC =0

and to detect the sign bit in AC(15)

○ DR bits 0 through 15 to check if DR= 0

○ The values of the seven flip-flops.

● The outputs of the control logic circuit are
○ Signals to control the inputs of the

nine registers

○ Signals to control the read and write

inputs of memory

○ Signals to set, clear, or complement

the flip-flops

○ Signals for S2, S1, and S0 to select a

register for the bus

○ Signals to control the AC adder and

logic circuit

Control of Registers and Memory

● The control inputs of the registers are LD (load), INR (increment), and CLR (clear).
● Eg: To derive the gate structure associated with the control inputs of AR.

Find all the statements that change the content of AR

R’T0: AR ← PC

R’T2: AR ← IR(0–11)

D7’IT3: AR ← M [AR]

RT0: AR ← 0

D5T4: AR ← AR + 1

● The control functions can be combined into three Boolean expressions as follows

LD(AR) = R’T0 + R’T2 + D7’IT3

CLR(AR) = RT0

INR(AR) = D5T4

Control of Common Bus

● The 16-bit common bus is controlled by the selection inputs S2, S1, and S0.
● The decimal number shown with each bus input specifies the equivalent binary number that

must be applied to the selection inputs in order to select the corresponding register.

● For example, when x1 = 1, the value of S2S1S0 must be 001 and the output of AR will be

selected for the bus.

Control of Common Bus

● The Boolean functions for the encoder are
S0 = x1 + x3 + x5 + x7

S1 = x2 + x3 + x6 + x7

S2 = x4 + x5 + x6 + x7

● To determine the logic for each encoder input, it is necessary to find the control functions that

place the corresponding register onto the bus.

● For example, to find the logic that makes x1 = 1, we scan all register transfer statements in and

extract those statements that have AR as a source.

D4T4: PC ← AR

D5T5: PC ← AR

Therefore, the Boolean function for x1 is, x1 = D4T4 D5T5

● In a similar manner we can determine the gate logic for the other registers.

Design of Accumulator Logic

Design of Accumulator Logic

● The adder and logic circuit has three sets of inputs.
○ 16 inputs comes from the outputs of AC.

○ 16 inputs comes from the data register DR.

○ eight inputs comes from the input register INPR.

● The outputs of the adder and logic circuit provide the data inputs for the register.

Design of Accumulator Logic

● In order to design the logic associated with AC, extract all the statements that change the
content of AC.

D0T5: AC ← AC ^ DR

D1T5: AC ← AC + DR

D2T5: AC ← DR

pB11: AC(07) ← INPR

rB9: AC ← AC

rB7: AC ← shr AC, AC(15) ← E

rB6: AC ← shl AC, AC(0) ← E

rB11: AC ← 0

rB5: AC ← AC + 1

● From this list we can derive the control logic gates and the adder and Logic circuit.

